જો  હોય તો f(2016)(2015) = ......  જ્યાં f(2016)(x) એ f નું f સાથે 2016 વખત સંયોજિત વિધેય દર્શાવે છે. from Mathematics ગણ, સંબંધ અને વિધેય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ગણ, સંબંધ અને વિધેય

Multiple Choice Questions

11. જો f(x)=square root of bold log bold space bold left parenthesis bold sin bold space bold x bold right parenthesis end root હોય, તો વિધેય f નો મહત્તમ પ્રદેશ ......... હોય. 
  • left curly bracket left parenthesis 4 straight k space plus space 3 space right parenthesis space straight pi over 2 vertical line space straight k space element of space straight Z right curly bracket
  • left curly bracket space left parenthesis 4 straight k space minus 1 right parenthesis space straight pi over 2 vertical line space straight k space element of space straight Z right curly bracket
  • left curly bracket left parenthesis 4 straight k space plus space 1 right parenthesis space straight pi over 2 vertical line space straight k element of straight Z right curly bracket space
  • left curly bracket left parenthesis 4 straight k space plus space 3 space right parenthesis space straight pi over 4 vertical line space straight k space element of space straight Z right curly bracket

Advertisement
12.
જો bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold x bold minus bold 3 over denominator bold x bold plus bold 1 end fraction bold comma bold space bold x bold space bold not equal to bold space bold minus bold 1 હોય તો f(2016)(2015) = ......  જ્યાં f(2016)(x) એ f નું f સાથે 2016 વખત સંયોજિત વિધેય દર્શાવે છે.
  • 2017

  • 2014

  • 2016

  • 2015


D.

2015

Tips: -

bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold x bold minus bold 3 over denominator bold x bold plus bold 1 end fraction આથી f(f(x)) = fopen parentheses fraction numerator bold x bold minus bold 3 over denominator bold x bold plus bold 1 end fraction close parentheses

                                          bold equals bold space fraction numerator begin display style fraction numerator bold x bold minus bold 3 over denominator bold x bold plus bold 1 end fraction end style bold minus bold 3 over denominator begin display style fraction numerator bold x bold minus bold 3 over denominator bold x bold plus bold 1 end fraction end style bold plus bold 1 end fraction bold space bold equals bold space fraction numerator bold x bold minus bold 3 bold minus bold 3 bold x bold minus bold 3 over denominator bold 3 bold minus bold 3 bold plus bold x bold plus bold x bold 1 end fraction
                             f(2)(x)   bold equals bold space fraction numerator bold minus bold 2 bold x bold minus bold 6 over denominator bold 2 bold x bold minus bold 2 end fraction 

                                            bold equals bold space fraction numerator bold minus bold left parenthesis bold x bold plus bold 3 bold right parenthesis over denominator bold minus bold left parenthesis bold 1 bold minus bold x bold right parenthesis end fraction

bold equals bold space fraction numerator bold left parenthesis bold x bold plus bold 3 bold right parenthesis over denominator bold left parenthesis bold 1 bold minus bold x bold right parenthesis end fraction

આ જ રીત,                      bold f to the power of bold left parenthesis bold 3 bold right parenthesis end exponent bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold f bold left parenthesis bold f to the power of bold left parenthesis bold 2 bold right parenthesis end exponent bold left parenthesis bold x bold right parenthesis bold right parenthesis 

                                              bold equals bold space bold f bold space open parentheses fraction numerator bold x bold plus bold 3 over denominator bold 1 bold minus bold x end fraction close parentheses

bold equals bold space fraction numerator begin display style fraction numerator bold x bold plus bold 3 over denominator bold 1 bold minus bold x end fraction end style bold minus bold 3 over denominator open parentheses begin display style fraction numerator bold x bold plus bold 3 over denominator bold 1 bold minus bold x end fraction end style close parentheses bold plus bold 1 end fraction

bold equals bold space fraction numerator bold x bold plus bold 3 bold minus bold 3 bold plus bold 3 bold x over denominator bold 1 bold minus bold x bold plus bold x bold plus bold 3 end fraction

bold equals bold space fraction numerator bold 4 bold x over denominator bold 4 end fraction

bold equals bold space bold x

∴ f(4)(x) = f(x); f(5)(x) = f(2) (x) તથા f(6) (x) = x મળે.

આમ, f3k (x) = x;k ≥ 1, k ∈ N થાય.

∴f2016 (x) = f3 (672) (x) = x 

         ∴ f2016 (2015) = 2015


Advertisement
13. વાસ્તવિક વિધેય f(x) = square root of bold x to the power of bold 2 bold space bold plus bold space bold 6 bold x bold space bold plus bold space bold 10 end root નો વિસ્તાર ...... મળે. 
  • (-∞, 1)

  • [1, ∞]

  • R

  • (1, ∞)


14. જો f(x) = cos (log x) હોય, તો f(x), f(y) -bold minus bold 1 over bold 2 bold space open square brackets bold f open parentheses bold x over bold y close parentheses bold plus bold f bold left parenthesis bold xy bold right parenthesis close square brackets bold space bold equals bold space bold. bold. bold. bold. bold space bold.
  • x

  • x2

  • 0

  • 1


Advertisement
15. f : (R -{-1} → R, f(x) = fraction numerator bold 1 bold minus bold x over denominator bold 1 bold plus bold x end fraction હોય તો, bold f bold space open parentheses fraction numerator bold x bold plus bold y over denominator bold 1 bold plus bold xy end fraction close parentheses = .......... 
  • f(x) + f(y) 

  • f(x)•f(y)

  • (f(x))2

  • f(x)/(f(y)


16.
જો f(x) એ દ્વિઘાત બહુપદી હોય તથા f(0) = 4 હોય તેમજ f(x+3) - f(x) 3x + 5,  x હોય, તો તે દ્વિઘાત બહુપદી હોય.
  • 3x2 + x +24

  • x2 + x + 24

  • 1 over 6 (3x2 + x + 24)
  • 1 half(x2 + 2x + 9)

17. જો  P = {1, 2, 3, 4,} Q = {a, b, c, d} હોય તો નીચેનાં જોડકાં જોડો : 

  • i - c, ii - a, iii - b

  • i - b, ii - c, ii - a

  • i - a, ii - b, iii - c

  • i - a, ii - c, iii - b


18. જો X = {4n - 3n - 1, n ∈ N} અને Y = {9 (n-1); n ∈ N} જ્યાં N = પ્રાકૃતિક સંખ્યાઓનો ગણ હોય તો X ∪ Y = ......... . 
  • X

  • Y - X

  • Y

  • N


Advertisement
19.
f(x) = ax2 + bx + c; x = 1, 2, 3 તથા g(x) = open curly brackets table attributes columnalign left end attributes row cell bold 3 bold x bold space bold plus bold 1 bold semicolon bold space bold x bold space bold equals bold space bold 2 bold comma bold 3 end cell row cell bold space bold space bold space bold space bold space bold space bold space bold space bold 3 bold semicolon bold space bold x bold space bold equals bold space bold 1 end cell end table close હોય તેમજ બંને વિધેયો સમાન હોય, તો નીચેનામાંથી કયું સત્ય બને ?
  • a = b = c = 1

  • straight a space equals space minus 1 half comma space straight b space equals space 11 over 2 comma space straight c space equals space minus 2
  • straight a space equals 11 over 2 comma space straight b space equals space minus 2 comma space straight c space equals 1 half
  • straight a space equals space 1 half comma space straight b space equals space 2 comma space straight c space equals space 11 over 2

20. જો વિધેય f એ સમીકરણ bold 3 over bold 10 bold space bold f bold left parenthesis bold x bold right parenthesis bold space bold plus bold space bold 2 over bold 10 bold f bold space open parentheses fraction numerator bold x bold plus bold 59 over denominator bold x bold minus bold 1 end fraction close parentheses bold space bold equals bold space bold x bold space bold plus bold space bold 3 નું સમાધાન કરે (જ્યાં bold x bold space bold not equal to bold 1) તો f(21) .......  
  • 110

  • 116

  • 106

  • 96


Advertisement

Switch