જો બીજનાં વર્ગોનો સરવાળો 40 તથા બીજના ઘનનો સરવાળો હોય તથા બીજ સંમેય હોય તેવું દ્વિઘાત સમીકરણ ........ હોય. from Mathematics દ્વિઘાત સમીકરણ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિઘાત સમીકરણ

Multiple Choice Questions

Advertisement
31.
જો બીજનાં વર્ગોનો સરવાળો 40 તથા બીજના ઘનનો સરવાળો હોય તથા બીજ સંમેય હોય તેવું દ્વિઘાત સમીકરણ ........ હોય.
  • x2 + 4x - 12 = 0
  • x2 + 4x + 12 = 0
  • x2 - 4x + 12 = 0
  • x2 - 4x - 12 = 0

D.

x2 - 4x - 12 = 0

Tips: -

ધારો કે માંગેલ દ્વિઘાત સમીકરણનાં બીજ α અને β છે. 

α2 + β2 = 40 તથા α3 + β3 = 208 
 
∴ (α + β)2 - 2αβ = 40 અને (α + β) (α2 - αβ + β2) = 208

∴ (α + β) (40 -αβ) = 208
 
ધારો કે α + β = m તથા α β = n છે. 

∴  m2 - 2n = 40 તથા m (40 - n) = 208 મળે.
 
bold therefore bold space fraction numerator bold m to the power of bold 2 bold minus bold 40 over denominator bold 2 end fraction bold equals bold n સમીકરણ m (40 - n) = 208 માં મૂકતાં, 
bold therefore bold m bold space open square brackets bold 40 bold minus open parentheses fraction numerator bold m to the power of bold 2 bold minus bold 40 over denominator bold 2 end fraction close parentheses close square brackets bold space bold equals bold space bold 208

bold therefore bold space bold m bold space bold equals bold space bold left square bracket bold 80 bold space bold minus bold space bold m to the power of bold 2 bold space bold plus bold space bold 40 bold right square bracket bold space bold equals bold space bold 416

bold therefore bold space bold 120 bold space bold m bold space bold minus bold space bold m to the power of bold 3 bold space bold equals bold space bold 416

bold therefore bold space bold m to the power of bold 3 bold space bold minus bold space bold 120 bold space bold m bold space bold plus bold space bold 416 bold space bold equals bold space bold 0

bold therefore bold space bold left parenthesis bold m bold space bold minus bold space bold 4 bold right parenthesis bold space bold left parenthesis bold m to the power of bold 2 bold space bold plus bold space bold 4 bold m bold space bold minus bold space bold 104 bold right parenthesis bold space bold equals bold space bold 0

∴ m = 4 અથવા m2 + 4m - 104 = 0 
 
              હવે m2 + 4m - 104 = 0 માટે, bold increment bold space bold equals bold space bold 16 bold space bold minus bold space bold 4 bold left parenthesis bold 1 bold right parenthesis bold space bold left parenthesis bold minus bold 104 bold right parenthesis bold space bold equals bold space bold 432 bold space
 
             ∴ square root of bold increment bold space bold equals bold space bold 12 square root of bold 3 અસંમેય સંખ્યા છે. પરંતુ α, β સંમેય છે.
 
∴ m = 4 શક્ય છે. આથી bold n bold space bold equals bold space fraction numerator bold 16 bold minus bold 40 over denominator bold 2 end fraction bold space bold equals bold space bold minus bold 12
∴ α + β = 4 ; α β = -12

∴ માંગેલ દ્વિઘાત સમીકરણ x2 - 4x - 12 = 0
 

Advertisement
32. log2(x2 + 5x + 10) = 2  નાં બીજ ...... મળે. 
  • 2, 3
  • -2,3
  • -2, -3
  • -3, 2

33. જો દ્વિઘાત સમીકરણ ax2 + bx + c = 0 નાં બીજ α અને β હોય, તો fraction numerator bold 1 over denominator bold aα bold plus bold b end fraction bold plus fraction numerator bold 1 over denominator bold aβ bold plus bold b bold space end fraction bold equals bold space bold. bold. bold. bold. bold. 
  • bold a over bold bc
  • straight c over bold ab
  • 1 over bold abc
  • bold b over bold ac

34. સમીકરણ x2 + x - 1 = 0 નાં બીજનો ગુણોત્તર m : n હોય તો નીચેનામાંથી કયું સત્ય બને ?
  • 3m = 2n
  • 2m = 3n
  • bold 2 bold m bold space bold plus bold space bold n bold left parenthesis bold 3 bold plus square root of bold 5 bold right parenthesis bold space bold equals bold 0
  • bold 3 bold m bold minus bold 2 bold n bold left parenthesis square root of bold 5 bold plus bold 1 bold right parenthesis bold space bold equals bold space bold 0

Advertisement
35. જો દ્વિઘાત સમીકરણ x2 - m (x + 1) - n = 0 નાં બીજ α અને β હોય, તો fraction numerator bold alpha to the power of bold 2 bold space bold plus bold space bold 2 bold alpha bold space bold plus bold space bold 1 over denominator bold alpha to the power of bold 2 bold space bold plus bold space bold 2 bold alpha bold space bold plus bold space bold n end fraction bold plus bold space fraction numerator bold beta to the power of bold 2 bold space bold plus bold space bold 2 bold beta bold space bold plus bold space bold 1 over denominator bold beta to the power of bold 2 bold space bold plus bold space bold 2 bold beta bold space bold plus bold space bold n end fraction ની કિંમત ...... હોય. 
  • 4

  • 1

  • 2

  • 0


36. જો સમીકરણ ax2 + bx + c = 0 નું એક બીજ એ બીજા બીજના n થાત જેટલું થાય તો  bold left parenthesis bold ac to the power of bold n bold right parenthesis to the power of begin inline style fraction numerator bold 1 over denominator bold n bold plus bold 1 end fraction end style end exponent bold space bold plus bold space bold left parenthesis bold a to the power of bold n bold c bold right parenthesis to the power of begin inline style fraction numerator bold 1 over denominator bold n bold plus bold 1 end fraction end style end exponent bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold. bold space bold. bold space
  • -ab

  • -b

  • -c

  • -a


37. જો x કોઈ વાસ્તવિક સંખ્યા હોય અને bold k bold space bold equals bold space fraction numerator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 over denominator bold x to the power of bold 2 bold space bold minus bold space bold x bold space bold plus bold space bold 1 end fraction હોય તો k ∈ ....... . 
  • open square brackets bold 1 over bold 3 bold comma bold 3 close square brackets
  • open parentheses bold 1 over bold 3 bold comma bold 3 close parentheses
  • bold k bold less or equal than bold space bold 1 over bold 3
  • k ≥ 3

38. સમીકરણ bold 27 to the power of begin inline style bold 1 over bold x end style end exponent bold space bold plus bold space bold 12 to the power of begin inline style bold 1 over bold x end style end exponent bold space bold equals bold space bold 2 bold. bold 8 to the power of begin inline style bold 1 over bold x end style end exponent નાં વાસ્તવિક બીજોની સંખ્યા ....... છે.
  • 3

  • 0

  • 2
  • 1


Advertisement
39. સમીકરણ bold 3 bold space open parentheses bold x to the power of bold 2 bold plus bold 1 over bold x to the power of bold 2 close parentheses bold space bold plus bold space bold 16 bold space open parentheses bold x bold plus bold 1 over bold x close parentheses bold space bold plus bold space bold 26 bold space bold equals bold space bold 0 નો ઉકેલ ગણ ...... હોય. 
  • open curly brackets bold minus bold 1 bold comma bold space bold 3 bold comma bold space fraction numerator bold minus bold 1 over denominator bold 3 end fraction close curly brackets
  • open curly brackets bold 1 bold comma bold space bold 3 bold comma bold space fraction numerator bold minus bold 1 over denominator bold 3 end fraction close curly brackets
  • open curly brackets bold 1 bold comma bold space bold 3 bold comma bold space bold 1 over bold 3 close curly brackets
  • open curly brackets bold minus bold 1 bold comma bold space bold minus bold 3 bold comma bold space fraction numerator bold minus bold 1 over denominator bold 3 end fraction close curly brackets

40. સમીકરણ (x+1) (x+2) (x+3) (x+4) = 120 નો વાસ્તવિક ઉકેલ ...... મળે.
  • -6, -1

  • -6, 1

  • -1, 6

  • 6, 1


Advertisement

Switch