12 સમાન પેનો 5 વિદ્યાર્થીઓને કુલ કેટલી વહેંચી શકાય ? from Mathematics દ્વિપદી પ્રમેય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિપદી પ્રમેય

Multiple Choice Questions

21.
ગણિત, ભૌતિક અને રસાયણ વિષયનાં પુસ્તકોના સમૂહમાં દરેક વિષયનાં ઓછામાં ઓછા 10 પુસ્તકો (ધોરણ-12ના) છે. આ સમુહમાંથી 5 પુસ્તકો કેટલી રીતે પસંદ કરી શકાય ?
  • 6
  • 21
  • 42
  • 24

22.
અસંખ્ય લાલ, સફેદ, કાળા અને લીલા દડાઓમાંથી દરેક રંગના દડા આવે તે રીતે 11 દડા પસંદ કરવાના પ્રકાર કેટલા થાય ? 
  • 165
  • 330
  • 120
  • અસંખ્ય

23.
એક પરીક્ષક કોઈપણ પ્રશ્નમાં 2 થી ઓછા ગુણ આપ્યા સિવાય, 8 પ્રશ્નમાં 25 ગુણ કેટલી રીતે આપી શકે ?
  • open parentheses table row bold 16 row bold 8 end table close parentheses
  • open parentheses table row bold 17 row bold 9 end table close parentheses
  • open parentheses table row bold 16 row bold 7 end table close parentheses
  • 16P7

24. જો (1 + x)n = c0 + c1x + c2x2 + ... + cnxn તો c0bold 1 over bold 2 bold space bold c subscript bold 1 bold plus bold space bold 1 over bold 3 bold space bold c subscript bold 2 bold space bold minus bold space bold. bold. bold. bold space bold plus bold space bold left parenthesis bold minus bold 1 bold right parenthesis to the power of bold n bold space fraction numerator bold 1 over denominator bold n bold plus bold 1 end fraction bold space bold c subscript bold n bold space bold equals bold space bold. bold. bold. bold. bold. bold space
  • fraction numerator bold 1 over denominator bold n bold plus bold 1 end fraction
  • fraction numerator bold 2 to the power of bold n bold plus bold 1 end exponent bold minus bold 1 over denominator bold n bold plus bold 1 end fraction
  • fraction numerator bold 2 to the power of bold n bold plus bold 1 end exponent bold plus bold 1 over denominator bold n bold plus bold 1 end fraction
  • fraction numerator bold 2 over denominator bold n bold plus bold 1 end fraction

Advertisement
25. જો (1 + x)100 = c0 + c1x + czx2 + ... + c100x100 તો bold 2 to the power of bold 1 bold space bold c subscript bold 0 over bold 1 bold space bold plus bold space bold 2 to the power of bold 2 bold space bold c subscript bold 1 over bold 2 bold space bold plus bold space bold 2 to the power of bold 2 bold space bold c subscript bold 2 over bold 3 bold space bold plus bold space bold. bold. bold. bold space bold plus bold space bold 2 to the power of bold 101 bold space bold c subscript bold 100 over bold 101 bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold space 
  • bold 3 to the power of bold 101 over bold 101
  • fraction numerator bold 3 to the power of bold 101 bold plus bold 1 over denominator bold 101 end fraction
  • fraction numerator bold 3 to the power of bold 101 bold minus bold 1 over denominator bold 101 end fraction
  • fraction numerator bold 2 to the power of bold 101 bold minus bold 1 over denominator bold 101 end fraction

26. જો bold sum from bold r bold equals bold 0 to bold n of bold thin space bold left parenthesis bold minus bold 1 bold right parenthesis to the power of bold r bold space bold left parenthesis bold a bold minus bold r bold right parenthesis bold space open parentheses table row bold n row bold r end table close parentheses bold space bold equals bold space bold. bold. bold. bold. bold. bold space bold.
  • a + 1
  • na
  • a
  • 0

27.
એક વિદ્યાર્થી ત્રણ વિષયની પરીક્ષા આપે છે. દરેક વિષયના પેપર મહત્તમ n ગુણના છે. તે 2n ગુણ કેટલી રીતે મેળવી શકે ? 
  • fraction numerator bold n bold left parenthesis bold n bold plus bold 1 bold right parenthesis over denominator bold 2 end fraction
  • open parentheses table row cell bold 3 bold n end cell row cell bold 2 bold n end cell end table close parentheses
  • n(n+1)(n+2)
  • fraction numerator bold left parenthesis bold n bold plus bold 1 bold right parenthesis bold left parenthesis bold n bold plus bold 2 bold right parenthesis over denominator bold 2 end fraction

28.
એક રૂપિયાના 20 સિક્કા, બે રૂપિયાના 15 સિક્કા અને પાંચ રૂપિયાના 10 સિક્કામાંથી 4 સિક્કા કુલ કેટલી રીતે પસંદ કરી શકાય ? 
  • 15
  • 30
  • 20
  • 21

Advertisement
29. જો open parentheses table row cell bold n bold plus bold 1 end cell row bold 1 end table close parentheses bold space open parentheses table row cell bold n bold plus bold 1 end cell row bold 2 end table close parentheses bold space open parentheses table row cell bold n bold plus bold 1 end cell row bold n end table close parentheses bold space bold equals bold space bold. bold. bold. bold. bold space bold. bold space
  • fraction numerator bold left parenthesis bold n bold plus bold 1 bold right parenthesis to the power of bold n over denominator bold n bold space bold factorial end fraction open parentheses table row bold n row bold 1 end table close parentheses bold space open parentheses table row bold n row bold 2 end table close parentheses bold space bold. bold. bold. bold space open parentheses table row bold n row bold n end table close parentheses
  • fraction numerator bold left parenthesis bold n bold minus bold 1 bold right parenthesis to the power of bold n over denominator bold n bold space bold factorial end fraction open parentheses table row bold n row bold 1 end table close parentheses bold space open parentheses table row bold n row bold 2 end table close parentheses bold space bold. bold. bold. bold space open parentheses table row bold n row bold n end table close parentheses
  • bold n to the power of bold n bold space open parentheses table row bold n row bold 1 end table close parentheses bold space open parentheses table row bold n row bold 2 end table close parentheses bold space bold. bold. bold. bold space open parentheses table row bold n row bold n end table close parentheses
  • bold left parenthesis bold n bold plus bold 1 bold right parenthesis to the power of bold n bold space open parentheses table row bold n row bold 1 end table close parentheses bold space open parentheses table row bold n row bold 2 end table close parentheses bold space bold. bold. bold. bold space open parentheses table row bold n row bold n end table close parentheses

Advertisement
30. 12 સમાન પેનો 5 વિદ્યાર્થીઓને કુલ કેટલી વહેંચી શકાય ?
  • open parentheses table row bold 16 row bold 5 end table close parentheses
  • open parentheses table row bold 11 row bold 4 end table close parentheses
  • open parentheses table row bold 16 row bold 4 end table close parentheses
  • 16P4

C.

open parentheses table row bold 16 row bold 4 end table close parentheses

Tips: -

માંગેલ પ્રકારોની સંખ્યા 

= જેમનો સરવાળો 12 થાય તેવી 5 પૂર્ણ સંખ્યાઓ શોધવાના પ્રકારોની સંખ્યા
 
= (1 + x + x2 + ... + x12)5 માં x12 નો સહગુણક
 
= (1 - x)5 ( 1 + x + x2 + ... + x12)5 (1 - x)-5 માં x12 નો સહગુણક
 
= ( 1 - x13)5 (1 - x)-5 માં x12 નો સહગુણક 

= (1-x)-5 માં x12 નો સહગુણક                [(1-x13)5 = 1 - 5x13 + 10x26 ... ]
 
= open parentheses table row cell bold 12 bold plus bold 5 bold minus bold 1 end cell row bold 12 end table close parentheses                 [(1-x)-r માં xm નો સહગુણક open parentheses table row cell bold n bold plus bold r bold minus bold 1 end cell row bold n end table close parentheses bold comma bold space bold r bold element of bold N bold right square bracket

open parentheses table row bold 16 row bold 12 end table close parentheses

open parentheses table row bold 16 row bold 4 end table close parentheses

Advertisement
Advertisement

Switch