જો  નું x ના ઘાતમાં વિસ્તરણ a0 + a1x + a2x3 + ....  હોય, તો an = ..... . from Mathematics દ્વિપદી પ્રમેય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિપદી પ્રમેય

Multiple Choice Questions

Advertisement
51.
જો fraction numerator bold 1 over denominator bold left parenthesis bold 1 bold minus bold ax bold right parenthesis bold right parenthesis bold 1 bold minus bold bx bold right parenthesis end fraction નું x ના ઘાતમાં વિસ્તરણ a0 + a1x + a2x3 + ....  હોય, તો an = ..... .
  • fraction numerator bold b to the power of bold n bold space bold minus bold space bold a to the power of bold n over denominator bold b bold minus bold a end fraction
  • fraction numerator bold b to the power of bold n bold plus bold 1 end exponent bold minus bold n to the power of bold n bold plus bold 1 end exponent over denominator bold b bold minus bold a end fraction
  • fraction numerator bold a to the power of bold n bold plus bold 1 end exponent bold minus bold b to the power of bold n bold plus bold 1 end exponent over denominator bold b bold minus bold a end fraction
  • fraction numerator bold a to the power of bold n bold minus bold b to the power of bold n over denominator bold b bold minus bold a end fraction

B.

fraction numerator bold b to the power of bold n bold plus bold 1 end exponent bold minus bold n to the power of bold n bold plus bold 1 end exponent over denominator bold b bold minus bold a end fraction

Tips: -

bold left parenthesis bold 1 bold space bold minus bold space bold ax bold right parenthesis to the power of bold minus bold 1 end exponent bold space bold left parenthesis bold 1 bold space bold minus bold space bold bx bold right parenthesis to the power of bold minus bold 1 end exponent bold space bold equals bold space bold left parenthesis bold 1 bold space bold plus bold space bold ax bold space bold plus bold space bold a to the power of bold 2 bold x to the power of bold 2 bold space bold plus bold space bold. bold. bold. bold right parenthesis bold space bold cross times bold space bold left parenthesis bold 1 bold space bold plus bold space bold bx bold space bold plus bold space bold b to the power of bold 2 bold x to the power of bold 2 bold space bold plus bold space bold. bold. bold. bold right parenthesis bold space

an = xn = નો સહગુણક

    bold equals bold space bold b to the power of bold n bold space bold plus bold space bold ab to the power of bold b bold minus bold 1 end exponent bold space bold plus bold space bold a to the power of bold 2 bold b to the power of bold n bold minus bold 2 end exponent bold space bold plus bold space bold. bold. bold. bold space bold plus bold space bold a to the power of bold n bold space

bold equals bold space bold b to the power of bold n bold space open parentheses bold 1 bold plus bold a over bold b bold plus bold a to the power of bold 2 over bold b to the power of bold 2 bold plus bold. bold. bold. bold plus bold a to the power of bold n over bold b to the power of bold n close parentheses bold space

bold equals bold space bold b to the power of bold n bold space open parentheses fraction numerator open parentheses begin display style bold a over bold b end style close parentheses to the power of bold n bold plus bold 1 end exponent bold minus bold 1 over denominator begin display style bold a over bold b end style bold minus bold 1 end fraction close parentheses bold space bold equals bold space bold b to the power of bold n bold space open parentheses fraction numerator bold a to the power of bold n bold plus bold 1 end exponent bold minus bold b to the power of bold n bold plus bold 1 end exponent over denominator bold a bold minus bold b end fraction close parentheses bold space bold b over bold b to the power of bold n bold plus bold 1 end exponent bold space bold equals bold space fraction numerator bold b to the power of bold n bold plus bold 1 end exponent bold minus bold a to the power of bold n bold plus bold 1 end exponent over denominator bold b bold minus bold a end fraction

Advertisement
52.
પ્રાકૃતિક સંખ્યાઓ m, n માટે જો (1-y)m(1+y)n = 1 + a1y + a2y + ... અને a1 = 10, તો (m ,n) = ...... .
  • (20,45)
  • (35,45)
  • (45,35)
  • (35,20)

53. જો table row bold lim row cell bold x bold rightwards arrow bold infinity end cell end table bold space open parentheses bold 1 bold plus bold a over bold x bold plus bold b over bold x to the power of bold 2 close parentheses to the power of bold 2 bold x end exponent bold space bold equals bold space bold e to the power of bold 2 bold commaતો a અને b ની કિંમતો ....... છે. 
  • a = 1, b ∈ R
  • b = 2, a ∈ R
  • a, b ∈ R
  • a = 1, b = 2

54. (1 + x) (1 - x)n ના વિસ્તરણમાં xn નો સહગુણક ...... છે.
  • n-1
  • (-1)n (1 - n)
  • (-1)n-1 n
  • (-1)n (n + 1)

Advertisement
55. જો (a-b)n, n ≥ 5 ના દ્વિપદી વિસ્તરણમાં પાંચમા અને છઠ્ઠા પદોનો સરવાળો 0 હોય, તો bold a over bold b
  • fraction numerator bold n bold minus bold 5 over denominator bold 6 end fraction
  • fraction numerator bold 5 over denominator bold n bold minus bold 4 end fraction
  • fraction numerator bold 6 over denominator bold n bold minus bold 5 end fraction
  • fraction numerator bold n bold plus bold 4 over denominator bold 5 end fraction

56. જો x > 0, તો scriptbase bold 27 over bold 5 end scriptbase presubscript bold left parenthesis bold 1 bold plus bold x bold right parenthesis end presubscriptના વિસ્તરણમાં પ્રથમ ઋણ પદ ......... છે.
  • 7 મું પદ

  • 5 મું પદ
  • 8 મું પદ 
  • 6 ઠ્ઠું પદ

57.
જો x એટલો નાનો હોય કે જેથી x3 અને x ની 3 કરતાં મોટી ઘાતવાળાં પદો અવગણી શકાય, તો fraction numerator bold left parenthesis bold 1 bold plus bold x bold right parenthesis to the power of bold 3 over bold 2 end exponent bold minus open parentheses bold 1 bold plus begin display style bold x over bold 2 end style close parentheses to the power of bold 3 over denominator bold left parenthesis bold 1 bold minus bold x bold right parenthesis to the power of bold 1 over bold 2 end exponent end fraction નું લગભગ મૂલ્ય ...... છે. 
  • bold minus bold 3 over bold 8 bold space bold x to the power of bold 2
  • bold x over bold 2 bold minus bold 3 over bold 8 bold x to the power of bold 2
  • bold 1 bold space bold minus bold space bold 3 over bold 8 bold space bold x to the power of bold 2
  • bold 3 bold x bold space bold plus bold space bold 3 over bold 8 bold space bold x to the power of bold 2

58.
(1 + αx)4 અને (1 - αx)6 ના વિસ્તરણમાં મધ્યમ પદોના સહગુણકો સમાન હોય, તો શૂન્યેતર α = ....... .
  • fraction numerator bold minus bold 3 over denominator bold 10 end fraction
  • fraction numerator bold minus bold 5 over denominator bold 3 end fraction
  • bold 3 over bold 5
  • bold 10 over bold 3

Advertisement
59. bold left parenthesis square root of bold 3 bold space bold plus bold space root index bold 8 of bold 5 bold right parenthesis to the power of bold 256માં પૂર્ણાંક પદોની સંખ્યા ....... છે.
  • 34
  • 33
  • 35
  • 32

60.
જો open parentheses bold ax to the power of bold 2 bold plus bold 1 over bold bx close parentheses to the power of bold 11માં x7 નો સહગુણક અને open parentheses bold ax bold minus bold 1 over bold bx to the power of bold 2 close parentheses to the power of bold 11 માં x-7 નો સહગુણક સમાન હોય, તો
  • a-b=1
  • a+b=1
  • ab=1
  • a=b

Advertisement

Switch