જો વક્ર 2y3 = ax2 + x3 નો બિંદુ (a, c) આગળનો સ્પર્શક અક્ષો પર α અને β અંતઃખંડો કાપતા હોય તથા જો α2 + β2 = 61 હોય તો |a| = .....  from Mathematics લક્ષ-સાતત્ય અને વિકલન

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : લક્ષ-સાતત્ય અને વિકલન

Multiple Choice Questions

151.
જ્યાં a > 0. જે અંતરાલમાં f'(x) ચુસ્ત વધતુ6 વિધેય હોય તેની લંબાએ L(a) છે. fraction numerator bold 1 over denominator bold L bold left parenthesis bold a bold right parenthesis end fraction bold equals bold. bold. bold.
  • 12

  • 9

  • 6

  • 3


152. વિધેય 2tan3x - 3tan2x + 12tan + 3 એ ........ 
  • વધતું વિધેય છે.

  • ઘટતું વિધેય છે. 

  • open parentheses bold 0 bold comma bold space bold pi over bold 4 close parenthesesમાં વધતું તથા open parentheses bold pi over bold 4 bold comma bold pi over bold 2 close parenthesesમાં ઘટતું વિધેય છે. 
  • open parentheses bold 0 bold comma bold space bold pi over bold 4 close parenthesesમાં ઘટતું તથા open parentheses bold pi over bold 4 bold comma bold pi over bold 2 close parenthesesમાં વધતું વિધેય છે.

153.

a = કયા ગણનો સભ્ય હોય તો વિધેય

bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space open parentheses fraction numerator square root of bold a bold space bold plus bold space bold 4 end root over denominator bold 1 bold minus bold a end fraction bold minus bold 1 close parenthesesx5 - 3x + log5 એ R પર ઘટતું વિધેય થશે ?

  • (-∞, ∞) 

  • (1, ∞) 

  • Error converting from MathML to accessible text.
  • Error converting from MathML to accessible text.

154. bold g bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold 1 over denominator bold log bold left parenthesis bold 1 bold space bold plus bold space bold x bold right parenthesis end fraction bold space bold minus bold space bold 1 over bold x bold comma bold space bold x bold space bold greater than bold space bold 0 bold space bold ત ો bold comma bold space
  • -∞ < g(x) < 0 

  • 0 < g(x) < 1

  • 1 < g(x) < 2 

  • -1 < g(x) < 0 


Advertisement
Advertisement
155.
જો વક્ર 2y3 = ax2 + x3 નો બિંદુ (a, c) આગળનો સ્પર્શક અક્ષો પર α અને β અંતઃખંડો કાપતા હોય તથા જો α2 + β2 = 61 હોય તો |a| = ..... 
  • 16

  • 28

  • 30

  • 31


C.

30

Tips: -

સ્પર્શકનો ઢાળ bold dy over bold dx bold space bold equals bold space fraction numerator bold 2 bold ax bold space bold plus bold space bold 3 bold x to the power of bold 2 over denominator bold 6 bold y to the power of bold 2 end fraction bold. bold space bold આથ ી bold space open parentheses bold dy over bold dx close parentheses subscript bold left parenthesis bold a bold comma bold a bold right parenthesis end subscript bold space bold equals bold space bold 5 over bold 6 

∴ (a, a) આગળ સ્પર્શકનું સમીકરણ


y - a = bold 5 over bold 6 (x -a)


∴ 6y - 6a = 5x - 5a આથી 5x - 6y = - a


X - અંતઃખંડ α =bold minus bold a over bold 5   Y - અંતઃખંડ β = bold a over bold 5


∴ α2 ‌+ β2 = 61. આથી. bold a to the power of bold 2 over bold 25 bold space bold equals bold space bold a to the power of bold 2 over bold 36 bold space bold equals bold space bold 61

a2 =25 × 36. આથી |a| = ± 30. આથી |a| = 30


Advertisement
156. વક્ર y = x3 - 6x2 + 9x + 4 0 ≤ x ≤ 5 ના સ્પર્શકના મહત્તમ ઢાળનું મૂલ્ય ..... છે. 
  • 24

  • 2

  • 3

  • 4


157. વિધેય f(x) = bold sum from bold k bold space bold equals bold space bold 1 bold A to bold 2015 of 2(x - k) ને x ની કઈ કિંમત માટે ન્યુનત્તમ મળે ? 
  • 0

  • 1000

  • 1008 

  • 2015


158.
ધારો કે f એ R પર વિકલનીય વિધેય છે અને h(x) = f(x) - (f(x))2 + (f(x))3, x ∈ R તો, 
  • જો f વધતું વિધેય હોય, તો અનુક્રમે h પણ વધતુ કે ઘટતું વિધેય થાય.

  • જો f ઘટતું વિધેય હોય, તો h વધતું વિધેય છે. 

  • જો f વધતું વિધેય હોય, તો h વધતુ વિધેય છે.

  • h વિશે કઈ કહી શકાય નહિ.


Advertisement
159.
વિધેય f(x) = cos x + bold 1 over bold 2cos 2x -bold 1 over bold 3cos 3x નાં મહત્તમ તથા ન્યુનત્તમ મૂલ્યો વચ્ચેનો તફાવત ..... છે. 
  • bold 9 over bold 4
  • bold 3 over bold 8
  • bold 2 over bold 3
  • bold 8 over bold 7

160.
વક્ર y2 = x(2 - x)2 ના બિંદુ (1, 1) આગળનો સ્પર્શક જો વક્રને ફરીથી બિંદુ P માં મળે તો P એ ...... 
  • open parentheses bold 9 over bold 4 bold comma bold 3 over bold 8 close parentheses
  • (4,4)

  • (-1,2) 

  • (-1, -1‌)


Advertisement

Switch