જો વક્ર ay2 = x3 ના બિંદુ P(at2, at3) આગળનો સ્પર્શ વક્રને ફરીથી વક્રના બિંદુ Q(t') આગળ મળે તો t' = ........  from Mathematics લક્ષ-સાતત્ય અને વિકલન

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : લક્ષ-સાતત્ય અને વિકલન

Multiple Choice Questions

171.

જો વક્ર xy + ax + by = 0 નો (1,1) આગળનો સ્પર્શક X-અક્ષ સાથે tan-1 2 માપનો ખૂણો બનાવે તો (a, b)

  • (1, 2)

  • (1, -2) 

  • (-1, -2) 

  • (-1, 2) 


172.
જો f : R → R એ એવું બહુપદી વિધેય હોય, જ્યાં f(2x) = f'(x) f"(x) તો ......        (ધાત n > 2) 
  • f(3) = 12

  • f એક-એક છે પરંતુ વ્યપ્ત નથી. 

  • f એક - એક અને વ્યાપ્ત છે.

  • f(x) = x ને ત્રણ ભિન્ન વાસ્તવિક ઉકેલ મળે. 


173. bold જ ો bold space bold P bold equals bold space bold lim with bold y bold rightwards arrow bold 0 below bold space bold 1 over bold y bold space table row bold pi row bold integral row bold 0 end table bold tan bold space bold left parenthesis bold y bold space bold sin bold space bold x bold right parenthesis bold space bold dx bold space bold અન ે bold space bold Q bold space bold equals bold space bold lim with bold y bold rightwards arrow bold 0 below bold space table row bold pi row bold integral row bold 0 end table open parentheses bold 1 bold minus bold x over bold n close parentheses to the power of bold n bold space bold e to the power of bold x over bold 3 end exponent bold space bold dx bold comma bold space bold ત ો bold space
  • 3Q = 4P 

  • 3P = 4Q 

  • p = 2Q = 5 

  • 2(P + Q) = 7 


Advertisement
174.
જો વક્ર ay2 = x3 ના બિંદુ P(at2, at3) આગળનો સ્પર્શ વક્રને ફરીથી વક્રના બિંદુ Q(t') આગળ મળે તો t' = ........ 
  • bold minus bold t over bold 2
  • bold space bold t over bold 2
  • 2t

  • -t


A.

bold minus bold t over bold 2

Tips: -

બિંદુ P (at2, at3) આગળ સ્પર્શકનું સમીકરણ

bold y bold space bold minus bold space bold at to the power of bold 3 bold space bold equals bold space fraction numerator bold 3 bold t over denominator bold 2 end fraction bold space bold left parenthesis bold x bold space bold minus bold space bold at to the power of bold 2 bold right parenthesis bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space open parentheses bold dy over bold dx bold equals fraction numerator bold 3 bold t to the power of bold 2 over denominator bold 2 bold t end fraction close parentheses bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold 1 bold right parenthesis


આસ્પર્શક વક્રને ફરીથી બિંદુ Q(t') = Q(at'2, at'3) માં મળે છે.


∴ (1) પરથી, a(t'3 - t'3) = fraction numerator bold 3 bold t over denominator bold 2 end fraction a(t'2 - t2)


∴(t'2 + t't - t2) 2 = 3t(t'+t)


∴ 2t'2 - t't - t2 = 0


∴(t' - t) (2t' + t) = 0


∴t' = bold minus bold t over bold 2                                                   (t' # t)


Advertisement
Advertisement
175. bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold lim with bold n bold rightwards arrow bold infinity below bold space open curly brackets fraction numerator bold cos bold space bold πx bold space bold minus bold space bold x to the power of bold 2 bold n end exponent bold space bold sin bold left parenthesis bold x bold space bold minus bold 1 bold right parenthesis over denominator bold 1 bold space bold plus bold space bold x to the power of bold 2 bold n bold plus bold 1 end exponent bold space bold minus bold space bold x to the power of bold 2 bold n end exponent end fraction close curly brackets
  • f એ x = 1 આગળ સતત છે. 

  • bold lim with bold x bold rightwards arrow bold 1 below bold space bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold 1 bold space
  • bold lim with bold x bold rightwards arrow bold 1 below bold space bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold minus bold space bold 1 bold space
  • bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space open curly brackets table row cell bold cos bold space bold πx end cell row cell bold minus bold 1 bold comma end cell row cell fraction numerator bold sin bold left parenthesis bold x bold space bold minus bold space bold 1 bold right parenthesis over denominator bold 1 bold space bold minus bold space bold x end fraction end cell end table close table row cell bold 0 bold space bold less than bold space bold x bold space bold space bold less than bold space bold 1 end cell row cell bold x bold space bold equals bold space bold 1 end cell row cell bold x bold space bold greater than bold space bold 1 end cell end table

176. bold ધ ા ર ો bold space bold ક ે bold space bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space open curly brackets table row cell bold e to the power of bold x bold comma end cell cell bold 0 bold space bold less than bold space bold x bold space bold less-than or slanted equal to bold space bold 1 end cell row cell bold 2 bold space bold minus bold space bold e to the power of bold x bold minus bold 1 end exponent bold comma end cell cell bold 1 bold space bold less than bold space bold x bold space bold less-than or slanted equal to bold space bold 2 end cell row cell bold x bold space bold minus bold space bold e bold comma end cell cell bold 2 bold space bold less than bold space bold x bold space bold less-than or slanted equal to bold space bold 3 end cell end table close bold space bold અન ે bold space bold g bold left parenthesis bold x bold right parenthesis bold space bold equals bold space table row bold x row bold integral row bold 0 end table bold space bold f bold left parenthesis bold t bold right parenthesis bold space bold dt bold space bold ત ો bold comma
  • g ને મહત્તમ મૂલ્ય ન મળે.
  • g ને ન્યુનત્તમ મૂલ્ય ન મળે.
  • x = e આગળ g ને સ્થાનીય ન્યુનત્તમ તથા x = 1 + log આગળ g ને સ્થાનીય મહત્તમ મૂલ્ય મળે છે. 
  • x = 1 આગળ g ને સ્થાનીય મહત્તમ તથા x = 2 આગળ g ને સ્થાનીય ન્યુનત્તમ મૂલ્ય મળે છે. 


177. જો વક્ર open parentheses bold x over bold a close parentheses to the power of bold n bold space bold plus bold space open parentheses bold y over bold b close parentheses to the power of bold n= 2 એ રેખાbold x over bold a bold space bold plus bold space bold y over bold b = 2 ને સ્પર્શે તો n = ...... 
  • માત્ર 2

  • માત્ર 3 

  • માત્ર 4 

  • કોઈપણ શુન્યેત્તર વાસ્તવિક સંખ્યાં


178.
વાસ્તવિક વિધેય f એ f (x, y ∈ R) સંબંધ ધરાવે છે. જો f(0) = 2 હોય તો f એ 
  • (0, ∞) પર વધતું તથા (-∞, 0) પર ઘટતું વિધેય છે.

  • f વિશે કઈ શકાય નહિ.

  • R પર વધતું વિધેય છે. 

  • R પર ઘટતું વિધેય છે.


Advertisement
179. જો વક્ર ax2 + by2 = 1 અને ax2 + by2 = 1 લંબચ્છેદી હોય તો
  • bold 1 over bold a bold space bold minus bold space bold 1 over bold b bold space bold equals bold space fraction numerator bold 1 over denominator bold a bold apostrophe end fraction bold space bold minus bold space fraction numerator bold 1 over denominator bold b bold apostrophe end fraction
  • bold 1 over bold a bold space bold plus bold space bold 1 over bold b bold space bold equals bold space fraction numerator bold 1 over denominator bold a bold apostrophe end fraction bold space bold plus bold space fraction numerator bold 1 over denominator bold b bold apostrophe end fraction
  • bold 1 over bold a bold space bold plus bold space bold 1 over bold b bold space bold equals bold space fraction numerator bold 1 over denominator bold a bold apostrophe end fraction bold space bold minus bold space fraction numerator bold 1 over denominator bold b bold apostrophe end fraction
  • bold 1 over bold a bold space bold minus bold space bold 1 over bold b bold space bold equals bold space fraction numerator bold 1 over denominator bold a bold apostrophe end fraction bold space bold plus bold space fraction numerator bold 1 over denominator bold b bold apostrophe end fraction

180.
વક્ર y = x3 ને ઉગમબિંદુ સિવાયના બિંદુ P1 આગળનો સ્પર્શક વક્રને ફરીથી બિંદુ P2 માં મળે છે. P2 આગળનો સ્પર્શક વક્રને ફરીથી બિંદુ P3માં મળે છે, તો આ જ રીતે આગળ વધતાં બિંદુ P1, P2, P3, ....... Pn ના X-યામ ...... 
  • સ્વરિત શ્રેણીમાં હોય.

  • સમાંતર તેમજ સમગુણોત્તર શ્રેણીમાં હોય.

  • સમગુણોત્તર શ્રેણીમાં હોય. 

  • સમાંતર શ્રેણીમાં હોય. 


Advertisement

Switch