ધારો કે P(x) એ ચાર ઘાતવાળી બહુપદી છે તથા  જો P(x) ને x = 1,2 આગળ મહત્તમ કે ન્યુનતમ અસ્તિત્વ ધરાવે તો P(2) = .......  from Mathematics લક્ષ-સાતત્ય અને વિકલન

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : લક્ષ-સાતત્ય અને વિકલન

Multiple Choice Questions

211.
જો વિધેય y = 1 + a2x - x3 જે બિંદુએ ન્યુનતમ હોય તે અસમતાfraction numerator bold x to the power of bold 2 bold space end exponent bold plus bold space bold x bold space bold plus bold space bold 2 bold space over denominator bold x to the power of bold 2 bold space bold plus bold space bold 5 bold x bold space bold plus bold space bold 6 bold space end fraction bold less-than or slanted equal to bold space bold 0 નું સમાધાન કરે તો પ્રચલ a ની કિંમત ...... ગણમાં હોય. 
  • bold empty set bold space
  • bold left parenthesis bold 2 square root of bold 3 bold space bold comma bold space bold 3 bold space square root of bold 3 bold right parenthesis
  • bold left parenthesis bold minus bold 3 square root of bold 3 bold comma bold space bold minus bold 2 bold space square root of bold 3 bold right parenthesis
  • Error converting from MathML to accessible text.

212.
જો વક્ર 4x2 + a2y2 = 4a2, 4 < a2 < 8 પરનું બિંદુ (u, v) એ બિંદુ (0, -2) થી સૌથી દૂરનું બિંદુ હોય તો u + v = .......... 
  • 8

  • 5

  • 3

  • 2


213. ધારો કે g(x) = 2f open parentheses bold x over bold 2 close parentheses+ f(1 - x) અને 0 ≤ x ≤ 1 માટે અને f"(x)  0 તો g(x) એ 
  • open parentheses bold 2 over bold 3 bold comma bold 1 close parenthesesમાં ઘટતું વિધેય છે.

  • open parentheses bold 0 bold comma bold 2 over bold 3 close parenthesesમાં વધતું વિધેય છે.
  • bold left square bracket bold 0 bold comma bold space bold 2 over bold 3 bold right parenthesisમાં ઘટતું વિધેય છે. 
  • bold left parenthesis bold 2 over bold 3 bold comma bold space bold 0 bold right square bracketમાં વધતું વિધેય છે. 

214.
a ને કઈ કિંમત માટે f(x) = x5 - 3x + log 5, b ∈ R એ R પર ઘટતું વિધેય થાય ? 
  • (2, 7)

  • (-1, 2) 

  • (0, 7) 

  • [-7, 1] 


Advertisement
Advertisement
215.
ધારો કે P(x) એ ચાર ઘાતવાળી બહુપદી છે તથા bold lim with bold x bold rightwards arrow bold 0 below bold space open parentheses bold 1 bold space bold plus bold space fraction numerator bold P bold left parenthesis bold x bold right parenthesis over denominator bold x to the power of bold 2 end fraction close parentheses જો P(x) ને x = 1,2 આગળ મહત્તમ કે ન્યુનતમ અસ્તિત્વ ધરાવે તો P(2) = ....... 
  • 1

  • 2

  • 3

  • 0


D.

0

Tips: -

bold lim with bold x bold rightwards arrow bold 0 below bold space open parentheses bold 1 bold space bold plus bold space fraction numerator bold P bold left parenthesis bold x bold right parenthesis over denominator bold x to the power of bold 2 end fraction close parentheses bold space bold equals bold space bold 2 bold. bold space bold આથ ી bold space bold lim with bold x bold rightwards arrow bold 0 below bold space fraction numerator bold P bold left parenthesis bold x bold right parenthesis over denominator bold x to the power of bold 2 end fraction bold space bold equals bold 1

ધારો કે P(x) = a0x4 + a1x3 + a2x2 + a3x + a4


bold lim with bold x bold rightwards arrow bold 0 below bold space bold space fraction numerator bold P bold left parenthesis bold x bold right parenthesis over denominator bold x to the power of bold 2 end fraction= 1 હોવાથી, a3 = a4 = 0 તથા a2 = 1


P(x) = a0x4 + a1x3 + x2


વળી, P(x) ને x = 1,2 આગળ મહત્તમ કે ન્યુનતમ મળે છે. આથી P'(1) = P'(2) = 0


P(x) = 4a0x3 + 3a1x2 + 2x


4a0 + 3a1 = - 2 અને 32a0 + 12a = - 4


આ બંને સમીકરણો ઉકેલતાં bold a subscript bold 0 bold space bold equals bold space bold 1 over bold 4 bold comma bold space bold a subscript bold 1 bold space bold equals bold space bold minus bold 1

bold therefore bold space bold P bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold 1 over bold 4 bold x to the power of bold 4 bold space bold minus bold space bold x to the power of bold 3 bold space bold plus bold space bold x to the power of bold 2 bold. bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold આથ ી bold space bold space bold P bold left parenthesis bold 2 bold right parenthesis bold space bold equals bold space bold 1 over bold 4 bold space bold 16 bold space bold minus bold space bold 8 bold space bold plus bold space bold 4 bold space bold equals bold space bold 0 bold space


Advertisement
216. bold y bold space bold equals bold space fraction numerator bold b to the power of bold 2 over denominator bold a bold space bold minus bold space bold x end fraction bold space bold plus bold space bold a to the power of bold 2 over bold x bold comma bold space bold 0 bold space bold less than bold space bold x bold space bold less than bold space bold a bold comma bold space bold a bold comma bold space bold b bold space bold greater than bold space bold 0 bold spaceનું ન્યુનતમ મૂલ્ય ....... છે.
  • fraction numerator bold left parenthesis bold a bold space bold plus bold space bold b bold right parenthesis to the power of bold 2 over denominator bold a end fraction
  • fraction numerator begin display style bold a bold space bold plus bold space bold b end style over denominator begin display style bold a end style end fraction
  • fraction numerator begin display style bold ab end style over denominator begin display style bold a bold space bold plus bold space bold b bold space end style end fraction
  • fraction numerator begin display style bold 1 end style over denominator begin display style bold a end style end fraction bold space bold plus bold space fraction numerator begin display style bold 1 end style over denominator begin display style bold b end style end fraction bold space

217.
વક્ર y2 = 8x અને xy = -1 ના સામાન્ય સ્પર્શકનું સમીકરણ ....... છે. 
  • 2y = x + 8

  • 3y = 9x + 2 

  • y = x + 2

  • y = 2x + 1 


218.
સંયોજિત વિધેય f1, (f2 (f3 (...(fn (x))) એ ઘટતું વિધેય છે અને n વિધેયોમાંથી r વિધેય છે તથા બાકિના વધતાં વિધેય છે. r(n-r) નું મહત્તમ મૂલ્ય કેટલું થાય ? 
  • fraction numerator bold n to the power of bold 2 bold space bold minus bold space bold 4 over denominator bold 4 end fraction bold comma bold space bold n bold space bold equals bold space bold 4 bold k bold comma bold space bold k bold space bold element of bold space bold N bold space
  • bold n to the power of bold 2 over bold 4 યુગ્મ સંખ્યા હોય.
  • fraction numerator begin display style bold n to the power of bold 2 bold space bold minus bold space bold 1 end style over denominator begin display style bold 4 end style end fraction bold comma bold space અયુગ્મ સંખ્યા હોય.
  • fraction numerator begin display style bold n to the power of bold 2 end style over denominator begin display style bold 4 end style end fraction bold comma bold space bold n bold space bold equals bold space bold 4 bold k bold space bold plus bold space bold 2 bold comma bold space bold k bold space bold element of bold space bold N

Advertisement
219.

વિધેય f(x) = 2|x| + |x + 2| - open vertical bar table row cell bold vertical line bold x bold space bold plus bold space bold 2 bold vertical line bold space bold minus bold space bold 2 bold vertical line bold x bold vertical line end cell end table close vertical bar ને x ની કઈ કિંમત માટે સ્થાનિય મહત્તમ કે સ્થાનીય ન્યુનતમ મૂલ્ય મળે ?

  • 2

  • bold 2 over bold 3
  • -2

  • bold minus bold 2 over bold 3

220.
ધારો કે f : [0, 1] એ R પરનું વિધેય છે તથા તે દ્વિતિય વિકલિત ધરાવે છે. વળી, f(0) = f(1) = 0 તથા f"(x) - 2 f'(x) + f(x) ≥ ex જો વિધેય e-x f(x) એ અંતરાલ [0, 1] માં x = bold 1 over bold 4 આગળ ન્યુનત્તમ હોય, તો નીચેનમાંથી કયું વિધાન સાચું છે. 
  • bold f bold left parenthesis bold x bold right parenthesis bold space bold less than bold space bold f bold left parenthesis bold x bold right parenthesis bold comma bold space bold 3 over bold 4 bold space bold less than bold space bold x bold space bold less than bold space bold 1
  • bold f bold left parenthesis bold x bold right parenthesis bold space bold less than bold space bold f bold left parenthesis bold x bold right parenthesis bold comma bold space bold 1 over bold 4 bold space bold less than bold space bold x bold space bold less than bold space bold 3 over bold 4
  • bold f bold left parenthesis bold x bold right parenthesis bold space bold greater than bold space bold f bold left parenthesis bold x bold right parenthesis bold comma bold space bold 0 bold space bold less than bold space bold x bold space bold less than bold space bold 1 over bold 4
  • bold f bold left parenthesis bold x bold right parenthesis bold space bold less than bold space bold f bold left parenthesis bold x bold right parenthesis bold comma bold space bold 0 bold space bold less than bold space bold x bold space bold less than bold space bold 1 over bold 4

Advertisement

Switch