જો  from Mathematics શ્રેણિક

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : શ્રેણિક

Multiple Choice Questions

21. open square brackets table row bold 5 cell bold minus bold 7 end cell row cell bold minus bold 2 end cell bold 3 end table close square brackets bold space bold X bold space bold equals bold space open square brackets table row cell bold minus bold 16 end cell cell bold minus bold 6 end cell row bold 7 bold 2 end table close square brackets થાય તેવો 2×2 શ્રેણિક X = ........ 
  • open square brackets table row bold 1 cell bold minus bold 4 end cell row cell bold minus bold 3 end cell bold 2 end table close square brackets
  • open square brackets table row bold 1 cell bold minus bold 4 end cell row bold 3 cell bold minus bold 2 end cell end table close square brackets
  • open square brackets table row cell bold minus bold 1 end cell bold 4 row cell bold minus bold 3 end cell bold 2 end table close square brackets
  • open square brackets table row cell bold minus bold 1 end cell bold 4 row bold 3 cell bold minus bold 2 end cell end table close square brackets

22. bold જ ો bold space bold A bold space bold equals bold space open vertical bar table row bold 5 cell bold 5 bold alpha end cell bold alpha row bold 0 bold alpha cell bold 3 bold alpha end cell row bold 0 bold 0 bold 5 end table close vertical bar bold space bold તથ ા bold space bold vertical line bold A to the power of bold 2 bold vertical line bold space bold equals bold space bold 25 bold space bold હ ો ય bold space bold ત ો bold space bold space bold vertical line bold alpha bold vertical line bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.
  • 1

  • 25

  • bold 1 over bold 5
  • 5


23. bold જ ો bold space bold space bold left square bracket bold space bold 1 bold space bold x bold space bold 1 bold right square bracket bold space open square brackets table row bold 1 bold 3 bold 2 row bold 2 bold 5 bold 1 row bold 15 bold 3 bold 2 end table close square brackets bold space open square brackets table row bold 1 row bold 2 row bold x end table close square brackets bold space bold equals bold space bold 0 bold space bold ત ો bold space bold x bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold space
  • 2, 14

  • 2, 14

  • -2, 14

  • -2, -14


24.
ધારો કે bold A bold space bold equals bold space open square brackets table row bold 1 bold 0 bold 0 row bold 2 bold 1 bold 0 row bold 3 bold 2 bold 1 end table close square brackets અને U1, U2, U3 એ એવા સ્તંભ શ્રેણિકો છે કે જેથી bold AU subscript bold 1 bold space bold equals bold space open square brackets table row bold 1 row bold 0 row bold 0 end table close square brackets bold semicolon bold space bold AU subscript bold 2 bold space bold equals bold space open square brackets table row bold 2 row bold 3 row bold 0 end table close square brackets bold semicolon bold space bold equals bold space bold AU subscript bold 3 bold space bold equals bold space open square brackets table row bold 2 row bold 3 row bold 1 end table close square brackets જો U એ 3×3 શ્રેણિક હોય કે જેના સ્તંંભ અનુક્રમે U1, U2, U3 છે તો |U| = ........ 
  • 3

  • -3

  • 2

  • bold 3 over bold 2

Advertisement
25. bold P bold space bold equals bold space open square brackets table row bold sinθ bold cosθ row cell bold minus bold cosθ end cell bold sinθ end table close square brackets bold space bold ત ો bold space bold P to the power of bold minus bold 1 end exponent bold space bold equals bold space bold. bold. bold. bold. bold. bold space
  • -PT

  • -P

  • PT 

  • P


26.  જો w એ 1નાં અવાસ્તવિક ઘનમૂળ હોય અને bold A bold space bold equals bold space open square brackets table row bold w bold 0 row bold 0 bold w end table close square brackets bold space bold ત ો bold space bold A to the power of bold 37 bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold space
  • A

  • 0

  • -A
  • A2


Advertisement
27.

જો open square brackets table row bold 1 cell bold minus bold cotθ end cell row bold cotθ bold 1 end table close square brackets bold space open square brackets table row bold 1 bold cotθ row cell bold minus bold cotθ end cell bold 1 end table close square brackets to the power of bold minus bold 1 end exponent bold space bold equals bold space open square brackets table row bold a cell bold minus bold b end cell row bold b bold a end table close square brackets bold space bold ત ો bold space bold a bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold space bold અન ે bold space bold b bold equals bold space bold semicolon bold space bold theta bold element of bold left curly bracket bold kπ bold space bold vertical line bold k bold element of bold space bold Z bold right curly bracket

  • cos2θ, -sin2θ

  • -cos2θ, -sin2θ

  • -cos2θ, sin2θ 

  • 1,1


C.

-cos2θ, sin2θ 

Tips: -

bold A bold space bold equals bold space open square brackets table row bold 1 bold cotθ row cell bold minus bold cotθ end cell bold 1 end table close square brackets bold space bold rightwards double arrow bold vertical line bold A bold vertical line bold equals bold space bold 1 bold plus bold space bold cot to the power of bold 2 bold theta bold space bold equals bold space bold cosec to the power of bold 2 bold theta

bold A to the power of bold minus bold 1 end exponent bold space bold equals bold space fraction numerator bold 1 over denominator bold cosec to the power of bold 2 bold theta end fraction bold space open square brackets table row bold 1 cell bold minus bold cotθ end cell row bold cotθ bold 1 end table close square brackets

open square brackets table row bold 1 cell bold minus bold cotθ end cell row bold cotθ bold 1 end table close square brackets open square brackets table row bold 1 bold cotθ row cell bold minus bold cotθ end cell bold 1 end table close square brackets to the power of bold minus bold 1 end exponent bold space bold equals bold space open square brackets table row bold a cell bold minus bold b end cell row bold b bold a end table close square brackets

fraction numerator bold 1 over denominator bold cosec to the power of bold 2 bold theta end fraction bold space open square brackets table row bold 1 cell bold minus bold cotθ end cell row bold cotθ bold 1 end table close square brackets open square brackets table row bold 1 cell bold minus bold cotθ end cell row bold cotθ bold 1 end table close square brackets bold space bold equals bold space open square brackets table row bold a cell bold minus bold b end cell row bold b bold a end table close square brackets bold space

fraction numerator bold 1 over denominator bold cosec to the power of bold 2 bold theta end fraction bold space open square brackets table row cell bold 1 bold minus bold cot to the power of bold 2 bold theta end cell cell bold 2 bold cotθ end cell row cell bold 2 bold cotθ end cell cell bold 1 bold minus bold cot to the power of bold 2 bold theta end cell end table close square brackets bold equals bold space open square brackets table row bold a cell bold minus bold b end cell row bold b bold a end table close square brackets

open square brackets table row cell bold son to the power of bold 2 bold theta bold minus bold cos to the power of bold 2 bold theta end cell cell bold 2 bold sinθ bold space bold cosθ end cell row cell bold 2 bold cosθsinθ end cell cell bold sin to the power of bold 2 bold theta bold minus bold cos to the power of bold 2 bold theta end cell end table close square brackets bold space bold equals bold space bold space open square brackets table row bold a cell bold minus bold b end cell row bold b bold a end table close square brackets

open square brackets table row cell bold minus bold cos to the power of bold 2 bold theta end cell cell bold minus bold sin to the power of bold 2 bold theta end cell row cell bold sin to the power of bold 2 bold theta end cell cell bold minus bold cod to the power of bold 2 bold theta end cell end table close square brackets bold space bold equals bold space bold space open square brackets table row bold a cell bold minus bold b end cell row bold b bold a end table close square brackets

bold a bold space bold equals bold space bold minus bold space bold cos bold space bold 2 bold theta bold comma bold space bold b bold space bold equals bold space bold sin bold space bold 2 bold theta

Advertisement
28. 3×3 શ્રેણિકો M અને N માટે નીચેનામાંથી કયાં વિધાન સત્ય નથી ? 
  • M અને N એ સંમિત અથવા વિસંમિત શ્રેણિકો હોય, તો અનુક્રમે NTMN એ સંમિત અથવા વિસંમિત શ્રેણિક છે.

  • MN - NM એ વિસંમિત શ્રેણિકો હોય, જ્યાં M અને N સંમિત શ્રેણિક છે. 

  • જો M અને N એ સંમિત શ્રેણિકો હોય, તો MN એ સંમિત શ્રેણિક છે. 

  • (adjM)(adjN) = adj(MN) જ્યાં M અને N સામાન્ય શ્રેણિકો છે.


Advertisement
29. જો 3×3 શ્રેણિક A માટે |A| = 3 તો |adj A| = ....... 
  • 3

  • -3

  • 9

  • 27


30.
જો શ્રેણિક bold A bold space bold equals bold space open square brackets table row bold 1 bold 2 bold 2 row bold 1 bold 2 cell bold minus bold 2 end cell row bold a bold 2 bold b end table close square brackets એ AAT = 91 નું સમાધાન કરે છે, તો ક્રમયુક્ત (a,b) = ....... 
  • (2, 1)

  • (2, -1) 

  • (-2, -1) 

  • (-2, 1) 


Advertisement

Switch