જો z એ સંકર સંખ્યા હોય તથા   તો ની ન્યુનતમ કિંમત from Mathematics સંકર સંખ્યાઓ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : સંકર સંખ્યાઓ

Multiple Choice Questions

11. જો z એ વાસ્તવિક ન હોય તેવી સંકર સંખ્યા વર્તુળ |z| = 1 પર આવેલ છે, તો z = ...... .  
  • fraction numerator 1 plus itan left parenthesis arg space straight z right parenthesis over denominator 1 minus itan space left parenthesis arg space straight z right parenthesis end fraction
  • fraction numerator 1 space minus space itan space left parenthesis arg space straight z right parenthesis over denominator 1 space plus space itan space left parenthesis arg space straight z right parenthesis end fraction
  • fraction numerator bold 1 bold plus bold itan bold space open parentheses begin display style fraction numerator bold arg bold space bold z over denominator bold 2 end fraction end style close parentheses over denominator bold space bold 1 bold space bold minus bold space bold itan bold space open parentheses begin display style fraction numerator bold arg bold space bold z over denominator bold 2 end fraction end style close parentheses end fraction
  • fraction numerator bold 1 bold minus bold itan bold space open parentheses begin display style fraction numerator bold arg bold space bold z over denominator bold 2 end fraction end style close parentheses over denominator bold space bold 1 bold space bold plus bold space bold itan bold space open parentheses begin display style fraction numerator bold arg bold space bold z over denominator bold 2 end fraction end style close parentheses end fraction

12.
વાસ્તવિક સહગુણકવાળી બહુપદી f(x) = x4 + ax3 + bx3 + cx + d માટે f(2i) = f(2+i) = 0 હોય તો a + b + c + d = ....... 
  • 10

  • 9

  • 4

  • 1


13. bold z with bold minus on top bold space bold equals bold space bold italic z to the power of bold 2 શરતનું પાલન કરતી કેટલી સંકર સંખ્યાઓ મળે ? 
  • 4

  • 3

  • 2

  • 1


14.
open vertical bar fraction numerator bold z bold minus bold 12 over denominator bold z bold minus bold 8 bold i end fraction close vertical bar bold space bold equals bold space bold 5 over bold 3અને open vertical bar fraction numerator bold z bold minus bold 4 over denominator bold z bold minus bold 8 end fraction close vertical bar bold space bold equals bold space bold 1 બંને શરતનું પાલન કરતી બધી સંકર સંખ્યાઓના કાલ્પનિક ભાગનો સરવાળો ....... થાય.
  • 35

  • 28

  • 25

  • 28


Advertisement
15. જો open vertical bar bold z bold minus bold 4 over bold z close vertical bar bold space bold equals bold space bold 2 હોય, તો |z| નાં મહત્તમ તથા ન્યુનતમ મૂલ્યો વચ્ચેનો તફાવત ......... છે. (z≠0) 
  • 4

  • 1

  • 2

  • 3


16. શૂન્યેતર ભિન્ન સંકર સંખ્યાઓ z અને w માટે જો  |z|2 w-|w|2 z = z - w તો ...... 
  • bold zw bold space bold equals bold space bold 1
  • bold z bold w with bold minus on top bold space bold equals bold space bold 1
  • bold z bold space bold equals bold space bold w with bold minus on top
  • z = -w


Advertisement
17. જો z એ સંકર સંખ્યા હોય તથા bold vertical line bold z bold vertical line bold space bold greater or equal than bold space bold 2 bold space bold ત ો bold space open vertical bar bold z bold plus bold 1 over bold 2 close vertical bar  તો ની ન્યુનતમ કિંમત
  • અંતરાલ (1, 2) માં છે,

  • 5/2 થી વધુ હોય. 
  • 3/2 થી વધુ તથા 5/2 થી ઓછી હોય. 
  • 5/2 હોય.

A.

અંતરાલ (1, 2) માં છે,

Tips: -

ભૌમિતિક રીતે |z| = 2 એ ઊગમબિંદુ કેન્દ્ર તથા 2 ત્રિજ્યાવાળું વર્તુળ છે.

|z| ≥ 2 એ આકૃતિમાં દર્શાવ્યા મુજબ વર્તુળ તેમજ તેની બહારનો પ્રદેશ થશે.



open vertical bar bold z bold plus bold 1 over bold 2 close vertical bar bold space bold equals bold space open vertical bar bold z bold minus open parentheses bold minus bold 1 over bold 2 close parentheses close vertical bar  એ z તેમજ open parentheses bold minus bold 1 over bold 2 bold comma bold 0 close parentheses વચ્ચેનું અંતર છે. આ અંતર (-2,0)આગળ ન્યુનતમ થશે જે 3/2 છે.


Advertisement
18. જો z ≠ 0, |zi| ની મહત્તમ સીમા ........ થશે.
  • bold e to the power of bold pi
  • bold e to the power of bold minus bold pi end exponent
  • 1

  • |z|


Advertisement
19. cos y sin y + cos2 y sin 2y + cos3y sin3y + ...... n પદ ......
  • tan y (1 - cosn y cosny)
  • cot y (1 - cosn cosny)
  • cot y (1 - sinn y sinny)
  • tan y (1 - sinn y sin n y)

20.
જો w એ 1 નું ઘનમૂળ હોય તો 2 (1 + w) (1 + w2) + 3 (2w + 1) + ... + (n+1) (nw2+1) = ......... (w ≠1) 
  • fraction numerator bold n to the power of bold 2 bold left parenthesis bold n bold plus bold 1 bold right parenthesis to the power of bold 2 over denominator bold 4 end fraction+n
  • fraction numerator bold n to the power of bold 2 bold left parenthesis bold n bold plus bold 1 bold right parenthesis to the power of bold 2 over denominator bold 4 end fraction
  • fraction numerator bold n to the power of bold 2 bold left parenthesis bold n bold plus bold 1 bold right parenthesis to the power of bold 2 over denominator bold 4 end fraction bold minus bold n
  • fraction numerator bold n to the power of bold 2 bold left parenthesis bold n bold plus bold 1 bold right parenthesis to the power of bold 2 over denominator bold 2 end fraction bold plus bold n

Advertisement

Switch