એક વિદ્યાર્થી પ્રથમ પાંચ પ્રશ્નોમાંથી ઓછામાં ઓછા ચાર પ્રશ્નોના જવાબ આપવાના હોય તે રીતે 13 પ્રશ્નોમાંથી 10 પ્રશ્નોના જવાબ કેટલી રીતે આપી શકે ? from Mathematics ક્રમચય અને સંચય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ક્રમચય અને સંચય

Multiple Choice Questions

Advertisement
91.
એક વિદ્યાર્થી પ્રથમ પાંચ પ્રશ્નોમાંથી ઓછામાં ઓછા ચાર પ્રશ્નોના જવાબ આપવાના હોય તે રીતે 13 પ્રશ્નોમાંથી 10 પ્રશ્નોના જવાબ કેટલી રીતે આપી શકે ?
  • 280
  • 346
  • 196
  • 140

C.

196

Tips: -

કુલ પ્રકારની સંખ્યા  bold equals bold space open parentheses table row bold 5 row bold 4 end table close parentheses bold space open parentheses table row bold 8 row bold 6 end table close parentheses bold space bold plus bold space open parentheses table row bold 5 row bold 5 end table close parentheses bold space open parentheses table row bold 8 row bold 5 end table close parentheses

                       bold equals bold space bold 5 bold space bold cross times bold space fraction numerator bold 8 bold space bold cross times bold space bold 7 over denominator bold 2 end fraction bold space bold plus bold space bold 1 bold space bold cross times bold space fraction numerator bold 8 bold space bold cross times bold space bold 7 bold space bold cross times bold space bold 6 over denominator bold 6 end fraction

bold equals bold space bold 5 bold space bold cross times bold space bold 28 bold space bold plus bold space bold 56

bold equals bold space bold 140 bold space bold plus bold space bold 56 bold space

bold equals bold space bold 196

Advertisement
92.
દડાઓના રંગ સિવાય દડાઓ સમાન છે. તેમ ધારી, 10 સફેદ, 9 લીલા અને 7 કાળા રંગના દડામાંથી એક કે વધુ દડા કરેલી રીતે પસંદ કરી શકાય ? 
  • 880
  • 879
  • 630
  • 629

93. 8 સમાન દડાને ત્રણ ભિન્ન ખોખામાં કેટલી રીતે મૂકી શકાય કે જેથી એક પણ ખોખું ખાલી ન રહે ?
  • 8C3
  • 38
  • 5
  • 21

94. ગણ S = {1, 2, 3, ... 12} ને સમાન સભ્યોની સંખ્યાવાળા ઉપગણ A, B, C માં વિભાજન કરવામાં આવે કે જેથી A ∪ B ∪ C = S, A ∩ B = B ∩ C = A ∩ C = up diagonal strike bold 0 તો આ કેટલા પ્રકારે શક્ય છે ? 
  • fraction numerator bold 12 bold space bold factorial over denominator bold left parenthesis bold 4 bold factorial bold right parenthesis to the power of bold 4 end fraction
  • fraction numerator bold 12 bold space bold factorial over denominator bold left parenthesis bold 4 bold factorial bold right parenthesis cubed end fraction
  • fraction numerator bold 12 bold space bold factorial over denominator bold 3 bold space bold left parenthesis bold 4 bold factorial bold right parenthesis to the power of bold 4 end fraction
  • fraction numerator bold 12 bold space bold factorial over denominator bold 3 bold space bold left parenthesis bold 4 bold factorial bold right parenthesis cubed end fraction

Advertisement
95.
જો p અને q નો લ.સા.અ. r2 t4 s2 હોય, જ્યાં r, s, t અવિભાજ્ય પૂર્ણાંક સંખ્યાઓ છે. p અને q ધન પૂર્ણાંક છે, તો આવી ક્રમયુક્ત જોડ (p, q) ની સંખ્યા ........ છે. 
  • 252
  • 254
  • 224
  • 225

96. વિધેય f(x) = (7-x)P(x-3) નો વિસ્તાર ...... છે.
  • {1, 2, 3, 4, 5}
  • {1, 2, 3, 4, 5, 6}
  • {1, 2, 3}
  • {1, 2, 3, 4}

97.
6 ભિન્ન નવલકથાઓ અને 3 ભિન્ન શબ્દકોશોમાંથી 4 નવલકથાઓ અને 1 શબ્દકોશ પસંદ કરીને છાજલી પર ગોઠવવામાં આવે છે. શબ્દકોશ હંમેશાં મધ્યમાં જ રહે તેવી ગોઠવણીના પ્રકારની સંખ્યા ........ છે.
  • ઓછામાં ઓછા 1000

  • 500 થી ઓછા 
  • ઓછામાં ઓછા 500 અને 750 થી ઓછા 
  • ઓછામાં ઓછા 750 પરંતુ 1000 થી ઓછા 

98.
એક ચૂંટણીમાં મતદાન વધુમાં વધુ જેટલા ઉમેદવાર ચૂંટવાના છે તેટલા મત આપી શકે છે. ચૂંટણીમાં 10 ઉમેદવારમાંથી 4 ઉમેદવાર ચૂંટવાના છે. જો મતદારને ઓછામાં ઓછો એક મત આપવાનો હોય, તો તે મતદાન કેટલી રીતે કરી શકે ?
  • 385
  • 5040
  • 1110
  • 6210

Advertisement
99. MISSISSIPPI શબ્દના અક્ષરોની ફેરબદલી કરીને કેટલા શબ્દો બનાવી શકાય કે જેથી S બે પાસપાસે ન આવે ?
  • bold 7 bold space bold times bold space bold C presuperscript bold 6 subscript bold 4 bold space bold times bold C presuperscript bold 8 subscript bold 4
  • bold 6 bold space bold times bold space bold 8 bold space bold times bold space bold C presuperscript bold 7 subscript bold 4
  • bold 6 bold space bold times bold space bold 7 bold space bold times bold space bold C presuperscript bold 8 subscript bold 4
  • bold 8 bold space bold times bold space bold C presuperscript 6 subscript bold 4 bold space bold times bold space bold C presuperscript bold 7 subscript bold 4

100. સમતલમાં આવેલાં 10 બિંદુઓ પૈકી 6 બિંદુઓ સમરેખ છે. જો આ બધાં બિંદુઓની મદદથી ત્રિકોણ બને, તો ....... 
  • N > 190
  • N ≤ 100
  • 100 < N ≤ 140
  • 140 < N ≤ 190

Advertisement

Switch