સમીકરણ  ના ....... ઉકેલ મળે. from Mathematics દ્વિઘાત સમીકરણ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિઘાત સમીકરણ

Multiple Choice Questions

21.
દ્વિઘાત સમીકરણનો ઉકેલ શોધતી વખતે બે વિદ્યાર્થીઓ પૈકી એક વિદ્યાર્થી સમીકરણનું અચળ પદ ખોટું લખે છે અને સમીકરણનાં સાચાં બીજનો સરવાળો 3 મળે છે જ્યારે બીજો વિદ્યાર્થી x2 નો સહગુણક તથા અચળ પદ સાચાં લખે છે જે અનુક્રમે 1 તથા -18 છે તો મળતા દ્વિઘાત સમીકરણનાં સાચાં બીજ ...... હોય.
  • -6, 3
  • 6, -3
  • -3, -6
  • 3, 6

22. જો log2 x + logx 2 = begin inline style bold 10 over bold 3 end style = log2y + logy2 તથા x ≠ y હોય તો x+y = ......   
  • bold 8 bold minus bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent
  • bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent
  • bold 8 bold plus bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent
  • 8

23. સમીકરણ open parentheses bold 5 bold plus bold 2 square root of bold 6 close parentheses to the power of bold x bold minus bold 3 end exponent bold plus open parentheses bold 5 bold minus bold 2 square root of bold 6 close parentheses to the power of bold x bold minus bold 3 end exponent bold space bold equals bold space bold 10 નું એક બીજ ....... હોય.
  • 3

  • 8

  • 4

  • 2


Advertisement
24. સમીકરણ fraction numerator bold log bold space bold 3 bold space bold plus bold space bold log bold space bold left parenthesis bold x to the power of bold 2 bold space bold plus bold space bold 2 bold right parenthesis over denominator bold log bold space bold left parenthesis bold x bold space bold minus bold space bold 2 bold right parenthesis end fraction bold space bold equals bold space bold 2 ના ....... ઉકેલ મળે.
  • 0

  • 1

  • 2

  • 3


A.

0

Tips: -

fraction numerator bold log bold space bold 3 bold space bold plus bold space bold log bold space bold left parenthesis bold x to the power of bold 2 bold space bold plus bold space bold 2 bold right parenthesis over denominator bold log bold space bold left parenthesis bold x bold space bold minus bold space bold 2 bold right parenthesis end fraction bold space bold equals bold space bold 2

bold therefore bold space bold log bold space bold left square bracket bold 3 bold space bold left parenthesis bold x to the power of bold 2 bold space bold plus bold space bold 21 bold right parenthesis bold right square bracket bold space bold equals bold space bold 2 bold space bold log bold space bold left parenthesis bold x bold space bold minus bold space bold 2 bold right parenthesis bold space bold equals bold space bold log bold space bold left parenthesis bold x bold space bold minus bold 2 bold right parenthesis to the power of bold 2

bold therefore bold space bold 3 bold space bold left parenthesis bold x to the power of bold 2 bold space bold plus bold space bold 2 bold right parenthesis bold space bold equals bold space bold left parenthesis bold x bold space bold minus bold space bold 2 bold right parenthesis to the power of bold 2

bold therefore bold space bold 3 bold x to the power of bold 2 bold space bold plus bold space bold 6 bold space bold equals bold space bold x to the power of bold 2 bold space bold minus bold space bold 4 bold x bold space bold plus bold space bold 4 bold space

bold therefore bold space bold 2 bold x to the power of bold 2 bold space bold plus bold space bold 6 bold x bold space bold plus bold space bold 2 bold space bold equals bold space bold 0 bold space

bold therefore bold space bold x to the power of bold 2 bold space bold plus bold space bold 2 bold x bold space bold plus bold space bold 1 bold space bold equals bold space bold 0 bold space

bold therefore bold space bold left parenthesis bold x bold space bold plus bold space bold 1 bold right parenthesis to the power of bold 2 bold space bold equals bold space bold 0
bold therefore bold space bold x bold space bold equals bold space bold minus bold 1       પરંતુ x = -1 લેતાં (x-2) શક્ય ન બને., 
bold therefore bold space bold x bold space bold not equal to bold space bold minus bold 1

માટે એક પણ ઉકેલ શક્ય નથી

Advertisement
Advertisement
25.
જો α ≠ β તથા α2 = 5α - 3 તેમજ β2 = 5β - 3 હોય, તો bold alpha over bold beta અને bold beta over bold alpha બીજ ધરાવતું દ્વિઘાત સમીકરણ ....... હોય.
  • x2 + 19x -3 = 0
  • 3x2 - 19x + 3 = 0
  • 3x2-16x + 1 = 0
  • 3x2 -- 19x - 3 = 0

26. જો bold x bold space bold equals bold space square root of bold 12 bold minus square root of bold 140 end root હોય, તો bold x bold space bold plus bold space bold 1 over bold x bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold.
  • fraction numerator square root of bold 7 bold minus bold 3 square root of bold 5 over denominator bold 2 end fraction
  • fraction numerator square root of bold 7 bold minus square root of bold 5 over denominator bold 2 end fraction
  • square root of bold 7 bold plus square root of bold 5
  • fraction numerator bold 3 square root of bold 7 bold minus square root of bold 5 over denominator bold 2 end fraction

27.
જો 3,3 એ દ્વિઘાત સમીકરણ x2 + ax + β = 0 નાં બીજ હોય તથા -8, 2 એ દ્વિઘાત સમીકરણ x2 + αx + b = 0 નાં બીજ હોય, તો સમીકરણ x2 + ax + b = 0 નાં બીજ ...... હોય.
  • -8, 2
  • 8, -2
  • -2, -8
  • 2, 8

28. સમીકરણ square root of bold x bold minus bold 2 end root bold left parenthesis bold italic x to the power of bold 2 bold space bold minus bold space bold 4 bold italic x bold space bold plus bold space bold 3 bold right parenthesis bold space bold equals bold space bold 0 નાં વાસ્તવિક બીજ ...... હોય. 
  • 1,2,3

  • 2, 3

  • 1, 3

  • 1, 2


Advertisement
29. જો x, y, z ભિન્ન અને વાસ્તવિક હોય, તો x2 + 4y2 + 9z2 - 6yz - 3zx - 2xy હંમેશાં ....... હોય. 
  • 0

  • ઋણ 
  • અનૃણ
  • સંકર સંખ્યા

30.
જો દ્વિઘાત સમીકરણ (a2 + b2)x2 - 2b(a + c) x + (b2+c2)=0 નાં બીજ સમાન હોય તોa, b, c,  ....... શ્રેણીમાં હોય a, b, c ∈ R. 
  • સમગુણોત્તર 

  • સમાંતર 
  • સ્વરિત 
  • સમાંતર-સમગુણોત્તર

Advertisement

Switch