log2(x2 + 5x + 10) = 2  નાં બીજ ...... મળે.  from Mathematics દ્વિઘાત સમીકરણ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિઘાત સમીકરણ

Multiple Choice Questions

Advertisement
31. log2(x2 + 5x + 10) = 2  નાં બીજ ...... મળે. 
  • 2, 3
  • -2,3
  • -2, -3
  • -3, 2

C.

-2, -3

Tips: -

log2 (x2 + 5x + 10) = 2 

∴ x2 + 5x + 10 = 22 = 4 

∴ x2 + 5x + 6 = 0 

∴ (x - 3) (x + 2) = 0 

∴ x = -2 કે x = -3 મળે. 

Advertisement
32.
જો બીજનાં વર્ગોનો સરવાળો 40 તથા બીજના ઘનનો સરવાળો હોય તથા બીજ સંમેય હોય તેવું દ્વિઘાત સમીકરણ ........ હોય.
  • x2 + 4x - 12 = 0
  • x2 + 4x + 12 = 0
  • x2 - 4x + 12 = 0
  • x2 - 4x - 12 = 0

33. સમીકરણ bold 3 bold space open parentheses bold x to the power of bold 2 bold plus bold 1 over bold x to the power of bold 2 close parentheses bold space bold plus bold space bold 16 bold space open parentheses bold x bold plus bold 1 over bold x close parentheses bold space bold plus bold space bold 26 bold space bold equals bold space bold 0 નો ઉકેલ ગણ ...... હોય. 
  • open curly brackets bold minus bold 1 bold comma bold space bold 3 bold comma bold space fraction numerator bold minus bold 1 over denominator bold 3 end fraction close curly brackets
  • open curly brackets bold 1 bold comma bold space bold 3 bold comma bold space fraction numerator bold minus bold 1 over denominator bold 3 end fraction close curly brackets
  • open curly brackets bold 1 bold comma bold space bold 3 bold comma bold space bold 1 over bold 3 close curly brackets
  • open curly brackets bold minus bold 1 bold comma bold space bold minus bold 3 bold comma bold space fraction numerator bold minus bold 1 over denominator bold 3 end fraction close curly brackets

34. જો દ્વિઘાત સમીકરણ ax2 + bx + c = 0 નાં બીજ α અને β હોય, તો fraction numerator bold 1 over denominator bold aα bold plus bold b end fraction bold plus fraction numerator bold 1 over denominator bold aβ bold plus bold b bold space end fraction bold equals bold space bold. bold. bold. bold. bold. 
  • bold a over bold bc
  • straight c over bold ab
  • 1 over bold abc
  • bold b over bold ac

Advertisement
35. સમીકરણ bold 27 to the power of begin inline style bold 1 over bold x end style end exponent bold space bold plus bold space bold 12 to the power of begin inline style bold 1 over bold x end style end exponent bold space bold equals bold space bold 2 bold. bold 8 to the power of begin inline style bold 1 over bold x end style end exponent નાં વાસ્તવિક બીજોની સંખ્યા ....... છે.
  • 3

  • 0

  • 2
  • 1


36. સમીકરણ (x+1) (x+2) (x+3) (x+4) = 120 નો વાસ્તવિક ઉકેલ ...... મળે.
  • -6, -1

  • -6, 1

  • -1, 6

  • 6, 1


37. સમીકરણ x2 + x - 1 = 0 નાં બીજનો ગુણોત્તર m : n હોય તો નીચેનામાંથી કયું સત્ય બને ?
  • 3m = 2n
  • 2m = 3n
  • bold 2 bold m bold space bold plus bold space bold n bold left parenthesis bold 3 bold plus square root of bold 5 bold right parenthesis bold space bold equals bold 0
  • bold 3 bold m bold minus bold 2 bold n bold left parenthesis square root of bold 5 bold plus bold 1 bold right parenthesis bold space bold equals bold space bold 0

38. જો સમીકરણ ax2 + bx + c = 0 નું એક બીજ એ બીજા બીજના n થાત જેટલું થાય તો  bold left parenthesis bold ac to the power of bold n bold right parenthesis to the power of begin inline style fraction numerator bold 1 over denominator bold n bold plus bold 1 end fraction end style end exponent bold space bold plus bold space bold left parenthesis bold a to the power of bold n bold c bold right parenthesis to the power of begin inline style fraction numerator bold 1 over denominator bold n bold plus bold 1 end fraction end style end exponent bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold. bold space bold. bold space
  • -ab

  • -b

  • -c

  • -a


Advertisement
39. જો x કોઈ વાસ્તવિક સંખ્યા હોય અને bold k bold space bold equals bold space fraction numerator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 over denominator bold x to the power of bold 2 bold space bold minus bold space bold x bold space bold plus bold space bold 1 end fraction હોય તો k ∈ ....... . 
  • open square brackets bold 1 over bold 3 bold comma bold 3 close square brackets
  • open parentheses bold 1 over bold 3 bold comma bold 3 close parentheses
  • bold k bold less or equal than bold space bold 1 over bold 3
  • k ≥ 3

40. જો દ્વિઘાત સમીકરણ x2 - m (x + 1) - n = 0 નાં બીજ α અને β હોય, તો fraction numerator bold alpha to the power of bold 2 bold space bold plus bold space bold 2 bold alpha bold space bold plus bold space bold 1 over denominator bold alpha to the power of bold 2 bold space bold plus bold space bold 2 bold alpha bold space bold plus bold space bold n end fraction bold plus bold space fraction numerator bold beta to the power of bold 2 bold space bold plus bold space bold 2 bold beta bold space bold plus bold space bold 1 over denominator bold beta to the power of bold 2 bold space bold plus bold space bold 2 bold beta bold space bold plus bold space bold n end fraction ની કિંમત ...... હોય. 
  • 4

  • 1

  • 2

  • 0


Advertisement

Switch