જો ax + by = 1 હોય અને સમીકરણ px2 + qy2 = 1 ને માત્ર એક જ બીજ હોય તો નીચેનામાંથી કયું સત્ય બને ? from Mathematics દ્વિઘાત સમીકરણ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિઘાત સમીકરણ

Multiple Choice Questions

41.
જો α, β એ સમીકરણ x2 + px + q = 0 નાં બીજ હોય અને α4, β4 એ સમીકરણ x2 - rx + s = 0 નાં બીજ હોય તો સમીકરણ x2 - 4qx + 2q2 - r = 0 નાં બીજ હંમેશાં ........ હોય.
  • બે સમાન અને વાસ્તવિક

  • બે ભિન્ન અને વાસ્તવિક 
  • અવાસ્તવિક સંકર 
  • એક વાસ્તવિક અને એક શુદ્વ કાલ્પનિક

42. ચલ x માં દ્વિઘાત સમીકરણ (cos p - 1)x2 + cos px + sin p = 0 નાં બીજ વાસ્તવિક હોય તો, p ∈ ..... 
  • bold left parenthesis bold 0 bold comma bold space bold 2 bold pi bold right parenthesis
  • bold left parenthesis bold minus bold pi bold comma bold space bold 0 bold right parenthesis
  • bold left parenthesis bold 0 bold comma bold space bold pi bold right square bracket
  • open parentheses fraction numerator bold minus bold pi over denominator bold 2 end fraction bold comma bold pi over bold 2 close parentheses

Advertisement
43.
જો ax + by = 1 હોય અને સમીકરણ px2 + qy2 = 1 ને માત્ર એક જ બીજ હોય તો નીચેનામાંથી કયું સત્ય બને ?
  • a2b2 = pq
  • bold a to the power of bold 2 over bold p bold space bold plus bold space bold b to the power of bold 2 over bold q bold space bold equals bold space bold 1
  • bold x bold space bold equals bold space fraction numerator bold minus bold a over denominator bold p end fraction
  • આપેલ પૈકી એક પણ નહી 


B.

bold a to the power of bold 2 over bold p bold space bold plus bold space bold b to the power of bold 2 over bold q bold space bold equals bold space bold 1

Tips: -

ax + by = 1. આથી bold y bold space bold equals bold space fraction numerator bold 1 bold space bold minus bold ac over denominator bold b end fraction

સમીકરણ px2 + qy2 = 1 માં y નું મૂલ્ય મૂકતાં, bold px to the power of bold 2 bold space bold plus bold space bold q bold space open parentheses fraction numerator bold 1 bold minus bold ax over denominator bold b end fraction close parentheses to the power of bold 2 bold space bold equals bold space bold 1

bold therefore bold space bold b to the power of bold 2 bold px to the power of bold 2 bold space bold plus bold space bold q bold space bold left parenthesis bold 1 bold space bold minus bold space bold ax bold right parenthesis to the power of bold 2 bold space bold equals bold space bold b to the power of bold 2

bold therefore bold space bold pb to the power of bold 2 bold x to the power of bold 2 bold space bold plus bold space bold q bold space bold minus bold space bold 2 bold aqx bold space bold plus bold space bold qa to the power of bold 2 bold x to the power of bold 2 bold space bold equals bold space bold b to the power of bold 2
 

∴ (qa2 + pb2)x2 - 2aqx + q - b2 = 0 ને માત્ર એક જ બીજ હોય તો bold increment bold space bold equals bold space bold 0


bold therefore bold space bold 4 bold a to the power of bold 2 bold q to the power of bold 2 bold space bold minus bold space bold 4 bold space bold left parenthesis bold aq to the power of bold 2 bold space bold plus bold space bold pb to the power of bold 2 bold right parenthesis bold space bold left parenthesis bold q bold space bold minus bold space bold b to the power of bold 2 bold right parenthesis bold space bold equals bold space bold 0

bold therefore bold space bold 4 bold a to the power of bold 2 bold q to the power of bold 2 bold minus bold 4 bold space bold left parenthesis bold a to the power of bold 2 bold space bold q to the power of bold 2 bold space bold minus bold space bold a to the power of bold 2 bold b to the power of bold 2 bold q bold space bold plus bold space bold b to the power of bold 2 bold pq bold space bold minus bold space bold b to the power of bold 4 bold p bold right parenthesis bold space bold equals bold space bold 0

bold therefore bold space bold a to the power of bold 2 bold q bold space bold minus bold space bold pq bold space bold plus bold space bold b to the power of bold 2 bold q bold space bold equals bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold b bold space bold not equal to bold space bold 0 bold right parenthesis

bold therefore bold space bold a to the power of bold 2 bold q bold space bold plus bold space bold b to the power of bold 2 bold p bold space bold equals bold space bold pq bold space

bold therefore bold space bold a to the power of bold 2 over bold p bold plus bold b to the power of bold 2 over bold q bold space bold equals bold space bold 1


Advertisement
44.
bold log subscript bold 10 bold space bold a bold space bold plus bold space bold log subscript bold 10 bold space square root of bold a bold space bold plus bold space bold log subscript bold 10 bold space scriptbase square root of bold a end scriptbase presuperscript bold 4 bold space bold plus bold space bold. bold. bold. bold space bold equals bold space bold b bold space bold greater than bold space bold 0 હોય તથા fraction numerator begin display style bold sum from bold n bold minus bold 1 to bold b of end style bold left parenthesis bold 2 bold n bold minus bold 1 bold right parenthesis over denominator begin display style bold sum from bold n bold equals bold 1 to bold b of end style bold left parenthesis bold 3 bold n bold plus bold 1 bold right parenthesis end fraction bold space bold equals bold space begin inline style fraction numerator bold 20 over denominator bold 7 bold space bold log subscript bold 10 bold space bold a end fraction end style હોય તો a = ...... . 
  • 1000
  • 100
  • 100000
  • 10

Advertisement
45.
a, b, c ∈ R; a ≠ 0 માટે જો સમીકરણ a2x2 + bx + c = 0 નું એક બીજ α હોય તથા સમીકરણ a2 x2 - bx - c = 0 નું એક બીજ β હોય જ્યાં 0 < α < β હોય તો સમીકરણ a2x2 + 2bx + 2c = 0 નું બીજ γ હંમેશા નીચેનામાંથી ........ નું સમાધાન કરે. 
  • bold alpha bold space bold less than bold space bold gamma bold space bold less than bold space bold beta
  • bold gamma bold space bold equals bold space bold alpha bold space bold plus bold space bold beta over bold 2
  • bold gamma bold space bold equals bold space bold space fraction numerator bold alpha bold space bold plus bold beta over denominator bold 2 end fraction
  • bold gamma bold space bold equals bold space bold space fraction numerator bold alpha bold space over denominator bold 2 end fraction bold plus bold beta

46.
જો સમીકરણો x2 + ax + b = 0 અને x2 + bx + a = 0 નું એક બીજ સમાન હોય તો a + b ની કિંમત ......... હોય. (a ≠ b)
  • 2
  • 1
  • -1
  • 0

47.
સમીકરણ (x - a) (x- b) + (x - b) (x - c) + (x - c) (x - a) = 0 નાં બીજ હંમેશાં ........ હોય. (a≠b) 
  • વાસ્ત્વવિક અસમાન 

  • સમાન 
  • અવાસ્તવિક સંકર 
  • શુદ્વ કાલ્પનિક

48.
જો દ્વિઘાત સમીકરણ (x - a) (x - b) - k = 0 નાં બીજ c તથા d હોય તો a તથા b બીજવાળું દ્વિઘાત સમીકરણ ....... મળે.
  • (x - c) (x - d) + k = 0
  • (x + c) (x + d) - k = 0
  • (x - c) (x - d) - k = 0
  • (x + c) (x + d) + k = 0

Advertisement
49. x ∈ R માટે bold 3 to the power of bold 72 bold space open parentheses bold 1 over bold 3 close parentheses to the power of bold x bold space open parentheses bold 1 over bold 3 close parentheses to the power of square root of bold x end exponent bold space bold greater than bold space bold 1 હોય તો x ∈ ........ . 
  • [0, 64]
  • (6, 64)
  • (0, 64]
  • [0, 64)

50.
 x ∈ R માટે જો દ્વિઘાત બહુપદી f(x) = ax2 + bx + c > 0 હોય તો g(x) = f(x) + f'(x) + f"(x) ....... થાય. x ∈ R.
  • g(x) = 0
  • g(x) < 0
  • g(x) ≥0
  • g(x) > 0

Advertisement

Switch