ના વિસ્તરણમાં અચળ પદ ..... છે. from Mathematics દ્વિપદી પ્રમેય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિપદી પ્રમેય

Multiple Choice Questions

61. open curly brackets bold x bold plus bold left parenthesis bold x to the power of bold 3 bold minus bold 1 bold right parenthesis to the power of begin inline style bold 1 over bold 2 end style end exponent close curly brackets to the power of bold 5 bold space bold plus bold space open curly brackets bold x bold minus bold x to the power of bold 3 bold minus bold 1 bold right parenthesis to the power of begin inline style bold 1 over bold 2 end style end exponent close curly brackets to the power of bold 5  એ x માં ...... ઘાતની બહુપદી છે.
  • 7
  • 8
  • 6
  • 5

62. 82n-(62)2n+1 ને 9 વડે ભાગતાં....... શેષ મળે.
  • 7
  • 2
  • 0
  • 8

63. જો n ધન પૂર્ણાંક હોય, તો bold left parenthesis square root of bold 3 bold space bold plus bold space bold 1 bold right parenthesis to the power of bold 2 bold n end exponent bold space bold minus bold space bold left parenthesis square root of bold 3 bold space bold minus bold space bold 1 bold right parenthesis to the power of bold 2 bold n end exponent ....... છે. 
  • એક અયુગ્મ ધન પૂર્ણાંક

  • એક યુગ્મ ધન પૂર્ણાંક 
  • એક અસંમેય સંખ્યા 
  • એક ધન પૂર્ણાંક સિવાયની સંમેય સંખ્યા

64.
આપેલ ધન પૂર્ણાંક r > 1, n > 2 માટે(1 + x)2n ના દ્વિપદી વિસ્તરણમાં (3r) માં અને (r+2) માં પદોના સહગુણકો સમાન હોય તો ....... 
  • n = 3r
  • n = 2r
  • n = 2r + 1
  • આપેલ પૈકી એક પણ નહી

Advertisement
65. open parentheses table row bold 20 row bold 0 end table close parentheses bold minus open parentheses table row bold 20 row bold 1 end table close parentheses bold plus open parentheses table row bold 20 row bold 2 end table close parentheses bold minus open parentheses table row bold 20 row bold 3 end table close parentheses bold plus bold. bold. bold. bold plus open parentheses table row bold 20 row bold 10 end table close parentheses bold equals bold space bold. bold. bold. bold. bold. bold space
  • bold 1 over bold 2 open parentheses table row bold 20 row bold 10 end table close parentheses
  • 0
  • open parentheses table row bold 20 row bold 10 end table close parentheses
  • bold minus open parentheses table row bold 20 row bold 10 end table close parentheses

66.
(10 + 3x)12 ના વિસ્તરણમાં x = 4 હોય, ત્યારે મોટામાં મોટું પદ ....... છે. તથા તેનું મૂલ્ય ....... છે.
  • bold T subscript bold 7 bold comma bold space open parentheses table row bold 12 row bold 5 end table close parentheses bold space bold 10 to the power of bold 5 bold space bold cross times bold space bold 12 to the power of bold 7
  • bold T subscript bold 8 bold comma bold space open parentheses table row bold 12 row bold 5 end table close parentheses bold space bold left parenthesis bold 120 bold right parenthesis to the power of bold 5 bold space bold cross times bold space bold 144
  • bold T subscript bold 7 bold comma bold space open parentheses table row bold 12 row bold 7 end table close parentheses bold space bold 10 to the power of bold 5 bold space bold cross times bold space bold 12 to the power of bold 8
  • bold T subscript bold 7 bold space bold equals bold space bold T subscript bold 8 bold comma bold space open parentheses table row bold 12 row bold 8 end table close parentheses bold space bold 10 to the power of bold 5 bold times bold 12 to the power of bold 7

Advertisement
67. open parentheses fraction numerator bold x bold plus bold 1 over denominator bold x to the power of bold 2 over bold 3 end exponent bold minus bold x to the power of bold 1 over bold 3 end exponent bold plus bold 1 end fraction bold minus fraction numerator bold x bold minus bold 1 over denominator bold x bold minus bold x to the power of bold 1 over bold 2 end exponent end fraction close parentheses to the power of bold 10 ના વિસ્તરણમાં અચળ પદ ..... છે.
  • 210
  • 310
  • 120
  • 4

A.

210

Tips: -

open square brackets fraction numerator bold x bold plus bold 1 over denominator bold x to the power of bold 2 over bold 3 end exponent bold minus bold x bold 1 over bold 3 end fraction bold minus fraction numerator bold x bold minus bold 1 over denominator bold x bold minus bold x bold 1 over bold 2 end fraction close square brackets to the power of bold 10

bold equals bold space open square brackets bold left parenthesis bold x to the power of begin inline style bold 1 over bold 3 end style end exponent bold plus bold 1 bold right parenthesis bold space bold minus bold space fraction numerator bold left parenthesis bold x to the power of bold 1 over bold 2 end exponent bold minus bold x bold right parenthesis bold left parenthesis bold x to the power of bold 1 over bold 2 end exponent bold plus bold 1 bold right parenthesis over denominator bold x to the power of bold 1 over bold 2 end exponent bold left parenthesis bold x to the power of bold 1 over bold 2 end exponent bold minus bold 1 bold right parenthesis end fraction close square brackets to the power of bold 10 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold x bold space bold plus bold space bold 1 bold space bold equals bold space bold left parenthesis bold x to the power of begin inline style bold 1 over bold 3 end style end exponent bold plus bold 1 bold right parenthesis bold space bold left parenthesis bold x to the power of begin inline style bold 2 over bold 3 end style end exponent bold minus bold space bold x to the power of begin inline style bold 1 over bold 3 end style end exponent bold plus bold 1 bold right parenthesis

bold equals bold space open square brackets open parentheses bold x to the power of begin inline style bold 1 over bold 3 end style end exponent bold plus bold 1 close parentheses bold space bold minus bold space open parentheses bold 1 bold plus bold x to the power of begin inline style fraction numerator bold minus bold 1 over denominator bold 2 end fraction end style end exponent close parentheses close square brackets to the power of bold 10 bold space bold equals bold space open parentheses bold x to the power of begin inline style bold 1 over bold 3 end style end exponent bold minus bold x to the power of begin inline style fraction numerator bold minus bold 1 over denominator bold 2 end fraction end style end exponent close parentheses to the power of bold 10

હવે bold T subscript bold r bold plus bold 1 end subscript bold space bold equals bold space open parentheses table row bold 10 row bold r end table close parentheses bold space open parentheses bold x to the power of begin inline style bold 1 over bold 3 end style end exponent close parentheses to the power of bold 10 bold minus bold r end exponent bold space open parentheses bold minus bold x to the power of begin inline style fraction numerator bold minus bold 1 over denominator bold 2 end fraction end style end exponent close parentheses to the power of bold r bold space bold equals bold space open parentheses table row bold 10 row bold r end table close parentheses bold space fraction numerator bold 10 bold minus bold r over denominator bold x to the power of bold 3 end fraction bold space bold space fraction numerator bold minus bold r over denominator bold x to the power of bold 2 end fraction bold space bold left parenthesis bold minus bold 1 bold right parenthesis to the power of bold r
                                                
                                                  bold equals bold space open parentheses table row bold 10 row bold r end table close parentheses bold space bold left parenthesis bold minus bold 1 bold right parenthesis to the power of bold r bold space fraction numerator bold 20 bold minus bold 5 bold r over denominator bold x to the power of bold 6 end fraction
અચળ પદ માટેfraction numerator bold 20 bold minus bold 5 bold r over denominator bold 6 end fraction bold space bold equals bold space bold 0 bold.. આથી r = 4


Advertisement
68.
(1 + ax + bx2) (1 - 2x)18 નું x ની ઘાતના સ્વરૂપમાં વિસ્તરણ કરતાં x3 અને x4 ના સહગુણકો 0 હોય, તો (a, b) = ........ 
  • open parentheses bold 14 bold comma bold 272 over bold 3 close parentheses
  • open parentheses bold 14 bold comma bold 251 over bold 3 close parentheses
  • open parentheses bold 16 bold comma bold 272 over bold 3 close parentheses
  • open parentheses bold 16 bold comma bold 251 over bold 3 close parentheses

Advertisement
69.
bold left parenthesis bold 1 bold space bold minus bold space bold 2 square root of bold x bold right parenthesis to the power of bold 20 ના દ્વિપદી વિસ્તરણમાં x ના પૂર્ણાંક ઘાતાંકવાળાં પદોના સહગુણકોનો સરવાળો ....... છે.
  • bold 1 over bold 2 bold space bold left parenthesis bold 3 to the power of bold 50 bold plus bold 1 bold right parenthesis
  • bold 1 over bold 2 bold space bold left parenthesis bold 3 to the power of bold 50 bold right parenthesis
  • bold 1 over bold 2 bold space bold left parenthesis bold 3 to the power of bold 50 bold minus bold 1 bold right parenthesis
  • bold 1 over bold 2 bold space bold left parenthesis bold 3 to the power of bold 50 bold plus bold 1 bold right parenthesis

70.
જ્યારે m = ...... ત્યારે સરવાળો bold sum from bold i bold equals bold 0 to bold m of bold space open parentheses table row bold 10 row bold i end table close parentheses bold space open parentheses table row bold 20 row cell bold m bold minus bold i end cell end table close parenthesesમહત્તમ છે. (જ્યાં જો p < q તોopen parentheses table row bold p row bold q end table close parentheses bold space bold equals bold space bold 0
  • 5
  • 15
  • 20
  • 10

Advertisement

Switch