ધારો a, b, c કે કોઇ પણ વાસ્તવિક સંખ્યાઓ છે. બધી જ શૂન્ય ન હોય તેવી વાસ્તવિક સંખ્યાઓ x, y, z માટે x = cy + bz; y = az + cx અને z = ay + bx છે. તો a2 + c2 + 2abc = ....... from Mathematics નિશ્વાયક

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : નિશ્વાયક

Multiple Choice Questions

11. k ની કેટલી કિંમતો માટે સમીકરણ સંહિત
(k + 1)x + 8y = 4k
kx + (k+3)y = 3k-1 ને એક પણ ઉકેલ નથી. 
  • 2
  • 1
  • 3
  • અનંત

12. નીચેની સમીકરણ સંહિતનો ઉકેલ અનન્ય હોય, તો k ની કિંમતનો ગણ ........ છે. 
x - ky + z = 0 
kx + 3y - kz = 0
3x + y - z = 0 
  • R - {2, 3}
  • R - {-3}
  • R - {2}
  • {2, 3}

13. જો a ≠ p, b ≠ q, c ≠ r અને open vertical bar table row bold p bold b bold c row bold a bold q bold c row bold a bold b bold r end table close vertical bar bold space bold equals bold space bold 0 હોય, તો fraction numerator bold p over denominator bold p bold minus bold a end fraction bold space bold plus bold space fraction numerator bold q over denominator bold q bold minus bold b end fraction bold space bold plus bold space fraction numerator bold r over denominator bold r bold minus bold c end fraction નું મૂલ્ય ....... છે.
  • 2
  • -1
  • 1
  • 0

14. ધારો કે a, b, c ∈ R - {0} તથા a + c ≠ 0 જો open vertical bar table row bold a cell bold a bold plus bold 1 end cell cell bold a bold minus bold 1 end cell row cell bold minus bold b end cell cell bold b bold plus bold 1 end cell cell bold b bold minus bold 1 end cell row bold c cell bold c bold minus bold 1 end cell cell bold c bold plus bold 1 end cell end table close vertical bar bold space bold plus bold space open vertical bar table row cell bold a bold plus bold 1 end cell cell bold b bold plus bold 1 end cell cell bold c bold minus bold 1 end cell row cell bold a bold minus bold 1 end cell cell bold b bold minus bold 1 end cell cell bold c bold plus bold 1 end cell row cell bold left parenthesis bold minus bold 1 bold right parenthesis to the power of bold n bold plus bold 2 end exponent bold a end cell cell bold left parenthesis bold minus bold 1 bold right parenthesis to the power of bold n bold minus bold 1 end exponent bold b end cell cell bold left parenthesis bold minus bold 1 bold right parenthesis to the power of bold n bold c end cell end table close vertical bar bold space bold equals bold space bold 0 તો n નું મૂલ્ય  ..... 
  • શૂન્ય

  • કોઇક શૂન્યેતર યુગ્મ પૂર્ણાંક 
  • અસંમેય સંખ્યા
  • કોઈક અયુગ્મ પૂર્ણાંક 

Advertisement
15. જો a + b + c = 0 હોય, તો open vertical bar table row cell bold a bold minus bold x end cell bold c bold b row bold c cell bold b bold minus bold c end cell bold a row bold b bold a cell bold c bold minus bold x end cell end table close vertical bar bold space bold equals bold space bold 0 નો એક ઉકેલ ....... છે.
  • 1
  • 2
  • 0
  • a2 + b2 + c2

16. જો a, b, c ભિન્ન અને ધન સંખ્યાઓ હોય, તો open vertical bar table row bold a bold b bold c row bold b bold c bold a row bold c bold a bold b end table close vertical bar નું મૂલ્ય ........ છે.
  • ધન

  • ઋણ
  • શૂન્ય 
  • સંકર

17. જો a1, a2, ..., an સમગુણોત્તર શ્રેણીમાં હોય અને ai > 0,  i ≥ 1 તો open vertical bar table row cell bold log bold space bold a subscript bold n end cell cell bold log bold space bold a subscript bold n bold plus bold 1 end subscript end cell cell bold log bold space bold a subscript bold n bold plus bold 2 end subscript end cell row cell bold log bold space bold a subscript bold n bold plus bold 3 end subscript end cell cell bold log bold space bold a subscript bold n bold plus bold 4 end subscript end cell cell bold log bold space bold a subscript bold n bold plus bold 5 end subscript end cell row cell bold semicolon bold pg bold space bold a subscript bold n bold plus bold 6 end subscript end cell cell bold log bold space bold a subscript bold n bold plus bold 7 end subscript end cell cell bold log bold space bold a subscript bold n bold plus bold 8 end subscript end cell end table close vertical bar space equals space......... space. space 
  • 4
  • 0
  • 2
  • 1

Advertisement
18.
ધારો a, b, c કે કોઇ પણ વાસ્તવિક સંખ્યાઓ છે. બધી જ શૂન્ય ન હોય તેવી વાસ્તવિક સંખ્યાઓ x, y, z માટે x = cy + bz; y = az + cx અને z = ay + bx છે. તો a2 + c2 + 2abc = .......
  • -1
  • 0
  • 1
  • 2

C.

1

Tips: -

x - cy - bz = 0 

cx - y + az = 0 સમીકરણનો ઉકેલ શૂન્યેતર છે.

bx + ay - z = 0 

open vertical bar table row bold 1 cell bold minus bold c end cell cell bold minus bold b end cell row bold c cell bold minus bold 1 end cell bold a row bold b bold a bold 1 end table close vertical bar bold space bold equals bold space bold 0

bold therefore bold space bold 1 bold space bold minus bold space bold a to the power of bold 2 bold space bold plus bold space bold c bold left parenthesis bold minus bold c bold minus bold ab bold right parenthesis bold space bold minus bold space bold b bold space bold left parenthesis bold ac bold space bold plus bold space bold b bold right parenthesis bold space bold equals bold space bold 0 bold space

bold therefore bold space bold 1 bold space bold minus bold space bold a to the power of bold 2 bold space bold minus bold space bold c to the power of bold 2 bold space bold minus bold space bold abc bold space bold minus bold space bold abc bold space bold minus bold space bold b to the power of bold 2 bold space bold equals bold space bold 0 bold space

bold therefore bold space bold a to the power of bold 2 bold space bold plus bold space bold b to the power of bold 2 bold space bold plus bold space bold c to the power of bold 2 bold space bold plus bold space bold 2 bold abc bold space bold equals bold space bold 1 bold space

Advertisement
Advertisement
19. જો l, m અને n એ કોઈ સમગુણોત્તર શ્રેણીના p, q અને r મા પદ હોય તથા l > 0, m >0, n >0 તો open vertical bar table row cell bold log bold space bold l end cell bold p bold 1 row cell bold log bold space bold m end cell bold q bold 1 row cell bold log bold space bold n end cell bold r bold 1 end table close vertical bar bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold space bold.
  • 2
  • 3
  • 0

  • 1

20. સુરેખ સમીકરણની સંહતિ નીચે મુજબ છે:
x+ 2x2 + x3 = 3
2x1 + 3x2 + x3 = 3 
3x1 + 5x2 + 2x3 = 1 સંહતિના ઉકેલોની સંખ્યા ....... છે.
  • 3

  • એક 
  • થી વધુ
  • શૂન્ય

Advertisement

Switch