from Mathematics લક્ષ-સાતત્ય અને વિકલન

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : લક્ષ-સાતત્ય અને વિકલન

Multiple Choice Questions

121.
જો વક્ર xy + ax + by = 0 ને (1, 1) આગળનો સ્પર્શક X-અક્ષ સાથે tan-1 2 માપનો ખૂણો બનાવે, તો fraction numerator bold a bold space bold plus bold space bold b bold space over denominator bold ab bold space end fraction bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold space
  • 0

  • 1

  • bold 1 over bold 2
  • fraction numerator bold minus bold 1 over denominator bold 2 end fraction

Advertisement
122. bold જ ો bold space bold v bold space bold e to the power of bold u over bold v to the power of bold 3 end exponent bold space bold equals bold space bold 1 bold space bold ત ો bold space bold space bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.
  • bold v bold space fraction numerator bold d to the power of bold 2 bold u over denominator bold dv to the power of bold 2 end fraction bold space bold plus bold space bold 2 bold space bold du over bold dv bold space bold plus bold space bold 3 bold v to the power of bold 2 bold space bold equals bold space bold 0 bold space
  • bold v bold space fraction numerator bold d to the power of bold 2 bold u over denominator bold dv to the power of bold 2 end fraction bold space bold plus bold space bold 2 bold space bold du over bold dv bold space bold equals bold space bold space bold 3 bold v to the power of bold 2 bold space
  • bold v bold space fraction numerator bold d to the power of bold 2 bold u over denominator bold dv to the power of bold 2 end fraction bold space bold minus bold space bold 2 bold space bold du over bold dv bold space bold plus bold space bold 3 bold v to the power of bold 2 bold space bold equals bold space bold 0 bold space
  • fraction numerator bold d to the power of bold 2 bold u over denominator bold dv to the power of bold 2 end fraction bold space bold minus bold space bold 2 bold space bold du over bold dv bold space bold equals bold space bold 3 bold v to the power of bold 2 bold space

C.

bold v bold space fraction numerator bold d to the power of bold 2 bold u over denominator bold dv to the power of bold 2 end fraction bold space bold minus bold space bold 2 bold space bold du over bold dv bold space bold plus bold space bold 3 bold v to the power of bold 2 bold space bold equals bold space bold 0 bold space

Tips: -

bold v bold space bold e to the power of bold u over bold v to the power of bold 3 end exponent bold space bold equals bold space bold 1 bold space

bold log bold space bold v bold space bold plus bold space bold u over bold v to the power of bold 3 bold space bold equals bold space bold 0 bold. bold space bold આથ ી bold space bold u bold space bold plus bold space bold v to the power of bold 3 bold space bold log bold space bold v bold space bold equals bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold 1 bold right parenthesis bold space

bold therefore bold space bold du over bold dv bold space bold plus bold space bold v to the power of bold 3 bold space bold log bold space bold v bold space bold equals bold space bold 0 bold space
bold therefore bold space bold v bold space bold du over bold dv bold space bold plus bold space bold v to the power of bold 3 bold space end exponent bold plus bold space bold 3 bold v to the power of bold 3 bold space bold log bold space bold v bold space bold equals bold 0 bold space

bold therefore bold space bold v bold space bold du over bold dv bold space bold plus bold space bold v to the power of bold 3 bold space bold plus bold space bold 3 bold space bold left parenthesis bold minus bold u bold right parenthesis bold space bold equals bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left square bracket bold left parenthesis bold 1 bold right parenthesis bold space bold પરથ ી bold right square bracket

bold therefore bold space bold v bold space fraction numerator bold d to the power of bold 2 bold u over denominator bold dv to the power of bold 2 end fraction bold space bold plus bold du over bold dv bold space bold plus bold space bold v to the power of bold 2 bold space bold minus bold space bold 3 bold space bold space bold du over bold dv bold space bold equals bold space bold 0 bold space

bold therefore bold space bold v bold space fraction numerator bold d to the power of bold 2 bold u over denominator bold dv to the power of bold 2 end fraction bold space bold minus bold space bold 2 bold space bold du over bold dv bold space bold plus bold space bold 3 bold v to the power of bold 2 bold space bold equals bold space bold 0 bold space

Advertisement
123.

વિધેય f : (0, ∞) → (0, ∞) માટે,

(1) f(ab) = f(a) f(b) અને
(2) bold lim with bold x bold rightwards arrow bold infinity below f(x) = c, (જ્યાં ક # 0) પ્રકારનું છે. f(4) = ....

  • 1

  • 2

  • 3

  • 4


124.
અરિક્ત ગણ A, B માટે  f : A → B અને g : B → A એવાં વિધેય છે જ્યાં f(g(x)) = x, ∀ x ∈ B. નીચેનામાંથી કયા વિધાન સત્ય (T) અને મિથ્યા (F) છે ? 

(1) વિધેય f એક-એક વિધેય છે. 
(2) વિધેય f વ્યાત્પ વિધેય છે. 
(3) વિધેય g એક-એક વિધેય છે. 
(4) વિધેય g વ્યાપ્ત વિધેય છે.
  • FTFT

  • TTFF 

  • TFTT

  • FTTF


Advertisement
125.
f : R → R વિકલનીય વિધેય છે. જો f(y) f(x - y) = f(x), ∀x, y ∈ R અને f'(0) = p, f'(5) = q, p, q # 0 તો f'(-5) = .......
  • q

  • bold p over bold q bold space
  • bold p to the power of bold 2 over bold q bold space
  • bold q over bold p

126.

f(x) = sin x + cos x, 0  ≤ x  ≤ 2bold pi એ ...... અંતરાલમાં ચુસ્ત ઘટતું વિધેય છે. 

  • open parentheses fraction numerator bold 5 bold pi over denominator bold 4 end fraction bold comma bold 2 bold pi close parentheses
  • bold left parenthesis bold 0 bold comma bold space bold 2 bold pi bold right parenthesis
  • open parentheses bold 0 bold comma bold pi over bold 4 close parentheses
  • open parentheses bold pi over bold 4 bold comma bold pi over bold 4 close parentheses

127.
R ત્રિજ્યાવાળા વર્તુળમાં અંતર્ગત ત્રિકોણની બાજુનો શૂન્યેત્તર વૃદ્ધિદર એ તેન સામેની બાજુના ખૂણાના વૃદ્દિદર કરતા Rગણો છે. આ ખૂણાનું માપ ..... થાય. 
  • bold pi over bold 2
  • bold pi over bold 3
  • bold pi over bold 4
  • bold pi over bold 6

128. bold જ ો bold space bold 3 bold space bold f bold left parenthesis bold x bold right parenthesis bold space bold minus bold space bold 2 bold f open parentheses bold 1 over bold x close parentheses bold space bold equals bold space bold x bold comma bold space bold ત ો bold space bold f bold apostrophe bold left parenthesis bold 2 bold right parenthesis bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold space
  • bold 1 over bold 2
  • bold 2 over bold 7
  • bold 7 over bold 2
  • 2


Advertisement
129. bold lim with bold n bold rightwards arrow bold infinity below bold space open parentheses root index bold 3 of bold n to the power of bold 2 bold space bold minus bold space bold n to the power of bold 3 bold space end root bold plus bold space bold n close parentheses bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold space
  • bold minus bold 1 over bold 3
  • bold 2 over bold 3
  • bold minus bold 2 over bold 3
  • fraction numerator begin display style bold 1 end style over denominator begin display style bold 3 end style end fraction

130.
જો a < b < c, f(x) એ (a, c) પર ચુસ્ત રીતે વધતું વિધેય હોય અને f(x) એ [a, c] પર સતત હોય તો .......
  • (b - c) f(a) + (c - b) f(b) > (c - a) f(c)

  • (b - a) f(c) + (c - b) f(a) > (c - a) f(b) 

  • (b - a) f(c) + (c - b) f(a) < (c - a) f(b) 

  • (b - c) f(a) + (c - b) f(b) > (c - a) f(c) 


Advertisement

Switch