Show that the normal at any point 0 to the curve
x = a cosө + a ө sinө. y = a sin ө – a ө cos ө
is at a constant distance from the origin.
Find the equation of the tangent and normal to the given curves at the points given:
y = x2 at (0,0).
Find the equation of the tangent and normal to the given curves at the points given:
y2 = 4ax at (0, 0).
Find the equation of the tangent and normal to the given curves at the points given:
y = x3 at (1, 1)
Find the equation of the tangent and normal to the given curves at the points given:
y = x2 at (2, 8)
Find the equation of tangent and normal to the hyperbola
The equation of hyperbola is
Differentiating both sides w.r.t.x,
At