Prove that the line  is a tangent to the curve  at the point

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

91. Find the equation of the tangent and normal to the given curves at the points given:
y = x4 – 6x3 + 13x2 – 10x + 5  at ( 0 , 5 )
76 Views

92. Find the equation of the tangent and normal to the given curves at the points given:
y = x4 – 6x3 + 13x– 10x + 5 at (1 ,3)
88 Views

93. Find the equation of the tangent and normal to the given curves at the points given:
straight y squared space equals space fraction numerator straight x cubed over denominator 4 minus straight x end fraction space space at space space left parenthesis 2 comma space space minus 2 right parenthesis
75 Views

94. Find the equation of the tangent and normal to the given curves at the points given:
straight y space equals fraction numerator 5 straight x squared over denominator 1 plus straight x squared end fraction
74 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

95. Find the equation of the tangent and normal to the given curves at the points given:
square root of straight x plus square root of straight y space equals space 5

74 Views

96. Find the equation of the tangent and normal to the given curves at the points given:
16 straight x squared plus 9 straight y squared space equals space 144 space space space at space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space space space where space straight x subscript 1 space equals space 2 space space space and space straight y subscript 1 greater than 0
Also find the points of intersection where both tangent and normal cut the x-axis.


80 Views

97. Find the equation of the tangent and normal to the given curves at the points given:
square root of straight x plus square root of straight y space equals space straight a space space space at space space open parentheses straight a squared over 4 comma space space straight a squared over 4 close parentheses
Also find the points of intersection where both tangent and normal cut the x-axis.


73 Views

98. Find the equation of the tangent to the curve y = (x3 – 1) (x – 2) at points where the curve cuts the x-axis.
78 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

99. Find the equation of the tangent to the curve straight y equals space fraction numerator straight x minus 7 over denominator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis end fraction at the point where  it cuts the x-axis.
73 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

100.

Prove that the line straight x over straight a plus straight y over straight b space equals space 1 is a tangent to the curve straight y space equals be to the power of negative straight x over straight a end exponent at the point where the curve cuts y-axis.


The equation of given curve is straight y space equals space be to the power of negative straight x over straight a end exponent                        ...(1)
It cuts y-axis where x = 0
therefore space space space space space space putting space straight x space equals space 0 space in space left parenthesis 1 right parenthesis comma space we space get comma
space space space space space space space space space space space space straight y equals be to the power of 0 space equals space straight b cross times 1 space equals space straight b
therefore space space space space space curve space left parenthesis 1 right parenthesis space cuts space straight y minus axis space at space left parenthesis 0 comma space straight b right parenthesis.
Differentiating (1), w.r.t. x, we get,
                       dy over dx space equals space minus straight b over straight a straight e to the power of negative straight x over straight a end exponent

At space left parenthesis 0 comma space straight b right parenthesis comma space space dy over dx space equals space minus straight b over straight a straight e to the power of 0 space equals space minus straight b over straight a cross times 1 space equals space minus straight b over straight a
therefore space space space space straight m space equals space minus straight b over straight a
The equation of tangent (0, b) with straight m space equals space minus straight b over straight a space space is
                        straight y minus straight b space equals space minus straight b over straight a left parenthesis straight x minus 0 right parenthesis                      open square brackets straight y minus straight y subscript 1 space equals space straight m left parenthesis straight x minus straight x subscript 1 right parenthesis close square brackets

 space space space space space ay minus ab space equals space minus bx comma space space space space space or space space space bx plus ay space equals space ab
space or space space space space space straight x over straight a plus straight y over straight b space space equals space 1
Hence space the space result. space

76 Views

Advertisement
Advertisement