Prove that the logarithmic function is increasing wherever it i

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

141.

Show that the function given by f(x) = e2x is strictly increasing on R.

127 Views

142.

Prove that f (x) = ax + b, where a and b are constants and a > 0 is an strictly increasing function for all real values of x. without using the derivative.

88 Views

Advertisement

143.

Prove that the logarithmic function is increasing wherever it is defined.


Let straight f left parenthesis straight x right parenthesis space equals space log space straight x                                       therefore space space space space space straight D subscript straight f space equals left parenthesis 0 comma space infinity right parenthesis
Now,        straight f apostrophe left parenthesis straight x right parenthesis space equals space 1 over straight x greater than 0 space space space space space space for all space space space straight x space space space space element of space space space space left parenthesis 0 comma space space space infinity right parenthesis
Logarithmic function is increasing wherever it is defined.

86 Views

Advertisement
144.

Show that the function f given by f (x) = 10x is increasing for all x.

85 Views

Advertisement
145.

Prove that the function f(x) = x3 – 3x2 + 3x – 100 is increasing on R.

88 Views

146.

Prove that the function f(x) = x3 – 3x2 + 3x – 100 is increasing on R.

90 Views

147. Prove that the function f (x) = 4x3 – 6x2 + 3x + 12 is increasing on R
94 Views

148. Show that the function f given by f(x) = x3 – 3x2 + 4x , x ∊ R is strictly increasing on R.
95 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

149.

Prove that the function f (x) = sinx is
(i) strictly increasing in open parentheses 0 comma space straight pi over 2 close parentheses
(ii) strictly decreasing in open parentheses straight pi over 2 comma space straight pi close parentheses
(iii) neither increasing nor decreasing in left parenthesis 0 comma space straight pi right parenthesis.

88 Views

 Multiple Choice QuestionsShort Answer Type

150.

Prove that the function f (x) = cos x is
(i) strictly increasing in left parenthesis negative straight pi comma space 0 right parenthesis
(ii) strictly decreasing in left parenthesis 0 comma space straight pi right parenthesis
(iii) neither increasing nor decreasing in left parenthesis negative straight pi comma space straight pi right parenthesis

88 Views

Advertisement