Prove that  is an increasing function of  in . from Mathem

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

161.

Prove that straight y equals space fraction numerator 4 space sin space straight theta over denominator 2 plus cos space straight theta end fraction minus straight theta is an increasing function of straight theta in open square brackets 0 comma space straight pi over 2 close square brackets.


Here,   straight y equals space fraction numerator 4 space sin space straight theta over denominator 2 plus cos space straight theta end fraction minus straight theta

therefore space space space space space dy over dθ space equals space fraction numerator left parenthesis 2 plus cos space straight theta right parenthesis thin space left parenthesis 4 space cos space straight theta right parenthesis space minus space 4 space sin space straight theta space left parenthesis negative sin space straight theta right parenthesis over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction minus 1
                  equals space fraction numerator 8 space cos space straight theta space plus space 4 space cos squared space straight theta space plus space 4 space sin space squared straight theta over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction minus 1 equals space space fraction numerator 8 space cos space straight theta space plus space 4 left parenthesis cos squared straight theta plus sin squared straight theta right parenthesis over denominator left parenthesis 2 plus cosθ right parenthesis squared end fraction minus 1
equals space fraction numerator 8 cosθ plus 4 over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction minus 1 space equals space fraction numerator 8 space cos space straight theta space plus space 4 space minus left parenthesis 2 plus space cos space straight theta right parenthesis squared over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction
space equals space fraction numerator 8 space cos space straight theta plus 4 minus 4 minus 4 space cos space straight theta minus space cos squared straight theta over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction
space equals fraction numerator 4 space cos space straight theta space minus space cos squared straight theta over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction space equals space fraction numerator cos space straight theta left parenthesis 4 minus cos space straight theta right parenthesis over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction

For y to be increasing,  dy over dθ greater than 0
rightwards double arrow space space space space space fraction numerator cos space straight theta space left parenthesis 4 minus cos space straight theta right parenthesis over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction greater than 0 space space space space rightwards double arrow space space space cos space straight theta thin space greater than 0 space space space space space left square bracket because space space left parenthesis 2 plus cos space straight theta right parenthesis squared greater than 0 comma space space 4 minus cos space straight theta space greater than 0 right square bracket
which space is space so space space if space space straight theta space element of open parentheses 0 comma space straight pi over 2 close parentheses
Hence space the space result. space

78 Views

Advertisement
162.

Find the intervals in which the function f is given by
                         straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 space sin space straight x space minus space 2 straight x minus space straight x space cosx over denominator 2 plus cos space straight x end fraction
is (i) increasing    (ii)  decreasing

90 Views

163.

Determine the values of x for which the function straight f left parenthesis straight x right parenthesis space equals fraction numerator straight x over denominator straight x squared plus 1 end fraction is increasing and for which it is decreasing.

73 Views

 Multiple Choice QuestionsShort Answer Type

164. Prove that the function x2 – x + 1 is neither increasing nor decreasing on (0, 1).
100 Views

Advertisement
165.

Let I be any interval disjoint from (– 1, 1). Prove that the function f given by straight f apostrophe left parenthesis straight x right parenthesis space equals space straight x plus 1 over straight x is strictly increasing on I.

107 Views

166.

Find the intervals in which the following function is decreasing:
f (x) = x– 12x

88 Views

167.

Find the intervals in which the function f given by f(x) = 2x2 – 3x is
(a) strictly increasing    (b) strictly decreasing

77 Views

168.

Find the intervals in which the function f given by f(x) = x2 – 4x+6  is
(a) strictly increasing    (b) strictly decreasing

82 Views

Advertisement
169.

Find the intervals in which the following functions are strictly increasing or decreasing:
x2+ 2x – 5

127 Views

170.

Find the intervals in which the following functions are strictly increasing or decreasing:
10 – 6x – 2x2

105 Views

Advertisement