Find the intervals in which the function f is given by      �

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

161.

Prove that straight y equals space fraction numerator 4 space sin space straight theta over denominator 2 plus cos space straight theta end fraction minus straight theta is an increasing function of straight theta in open square brackets 0 comma space straight pi over 2 close square brackets.

78 Views

Advertisement

162.

Find the intervals in which the function f is given by
                         straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 space sin space straight x space minus space 2 straight x minus space straight x space cosx over denominator 2 plus cos space straight x end fraction
is (i) increasing    (ii)  decreasing


Here straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 space sin space straight x space minus space 2 straight x minus space straight x space cosx over denominator 2 plus cos space straight x end fraction space equals space fraction numerator 4 sinx space minus space straight x left parenthesis 2 plus cosx right parenthesis over denominator 2 plus cosx end fraction space equals fraction numerator 4 space sinx over denominator 2 plus cosx end fraction minus straight x

therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space fraction numerator left parenthesis 2 plus cos space straight x right parenthesis thin space left parenthesis 4 space cos space straight x right parenthesis space minus space left parenthesis 4 space sin space straight x right parenthesis space left parenthesis negative sin space straight x right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction minus 1
                equals space fraction numerator 8 space cosx space plus space 4 space cos squared straight x space plus space 4 space sin squared straight x over denominator left parenthesis 2 plus cos space straight x right parenthesis squared end fraction minus 1 space equals space fraction numerator 8 space cosx space plus space 4 left parenthesis cos squared straight x plus sin to the power of 2 straight x end exponent right parenthesis over denominator left parenthesis 2 plus cos space straight x right parenthesis squared end fraction minus 1
equals space fraction numerator 8 space cosx space plus space 4 over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction minus 1 space equals space fraction numerator 8 space cos space straight x plus space 4 space minus space left parenthesis 2 plus space cosx right parenthesis squared over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space fraction numerator 8 cosx plus 4 minus 4 minus cos squared straight x minus 4 cosx over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction space equals space fraction numerator 4 space cosx minus cos squared straight x over denominator left parenthesis 2 space plus cosx right parenthesis squared end fraction
therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space fraction numerator cosx space left parenthesis 4 minus cosx right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction
(i) For f(x) to be increasing. 
                      straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0 space space space space space space rightwards double arrow space space space space space space fraction numerator cosx left parenthesis 4 minus cosx right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction greater than 0
rightwards double arrow space space space cosx space greater than space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space left parenthesis 2 plus cosx right parenthesis squared greater than 0 comma space space space 4 minus cosx greater than 0 space as space minus straight i less or equal than cosx less or equal than 1 close square brackets
rightwards double arrow space space space 0 space less than space straight x thin space less than straight pi over 2 space space space or space space space space fraction numerator 3 straight pi over denominator 2 end fraction less than straight x less than 2 straight pi
(ii) For f(x) to be decreasing,
                 straight f apostrophe left parenthesis straight x right parenthesis thin space less than 0 space space space space space space space space space space rightwards double arrow space space space space space space fraction numerator cosx space left parenthesis 4 minus cosx right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction space less than space 0 space space space space space rightwards double arrow space space space space space cosx less than 0
therefore space space space space space straight pi over 2 less than straight x less than fraction numerator 3 straight pi over denominator 2 end fraction
               
            

90 Views

Advertisement
163.

Determine the values of x for which the function straight f left parenthesis straight x right parenthesis space equals fraction numerator straight x over denominator straight x squared plus 1 end fraction is increasing and for which it is decreasing.

73 Views

 Multiple Choice QuestionsShort Answer Type

164. Prove that the function x2 – x + 1 is neither increasing nor decreasing on (0, 1).
100 Views

Advertisement
165.

Let I be any interval disjoint from (– 1, 1). Prove that the function f given by straight f apostrophe left parenthesis straight x right parenthesis space equals space straight x plus 1 over straight x is strictly increasing on I.

107 Views

166.

Find the intervals in which the following function is decreasing:
f (x) = x3 – 12x

88 Views

167.

Find the intervals in which the function f given by f(x) = 2x2 – 3x is
(a) strictly increasing    (b) strictly decreasing

77 Views

168.

Find the intervals in which the function f given by f(x) = x2 – 4x+6  is
(a) strictly increasing    (b) strictly decreasing

82 Views

Advertisement
169.

Find the intervals in which the following functions are strictly increasing or decreasing:
x2+ 2x – 5

127 Views

170.

Find the intervals in which the following functions are strictly increasing or decreasing:
10 – 6x – 2x2

105 Views

Advertisement