Let I be any interval disjoint from (– 1, 1). Prove that the

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

161.

Prove that straight y equals space fraction numerator 4 space sin space straight theta over denominator 2 plus cos space straight theta end fraction minus straight theta is an increasing function of straight theta in open square brackets 0 comma space straight pi over 2 close square brackets.

78 Views

162.

Find the intervals in which the function f is given by
                         straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 space sin space straight x space minus space 2 straight x minus space straight x space cosx over denominator 2 plus cos space straight x end fraction
is (i) increasing    (ii)  decreasing

90 Views

163.

Determine the values of x for which the function straight f left parenthesis straight x right parenthesis space equals fraction numerator straight x over denominator straight x squared plus 1 end fraction is increasing and for which it is decreasing.

73 Views

 Multiple Choice QuestionsShort Answer Type

164. Prove that the function x2 – x + 1 is neither increasing nor decreasing on (0, 1).
100 Views

Advertisement
Advertisement

165.

Let I be any interval disjoint from (– 1, 1). Prove that the function f given by straight f apostrophe left parenthesis straight x right parenthesis space equals space straight x plus 1 over straight x is strictly increasing on I.


Here straight f left parenthesis straight x right parenthesis space equals space straight x plus 1 over straight x space space space space space space rightwards double arrow space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 1 minus 1 over straight x squared space equals space fraction numerator straight x squared minus 1 over denominator straight x squared end fraction
Now, straight f apostrophe left parenthesis straight x right parenthesis greater than 0 space space if space fraction numerator straight x squared minus 1 over denominator straight x squared end fraction greater than 0
space straight i. straight e. comma space space space if space straight x squared minus 1 greater than 0 space space space space straight i. straight e. comma space space if space straight x squared greater than 1 space space space space straight i. straight e. comma space if space open vertical bar straight x squared close vertical bar greater than 1
straight i. straight e. comma space space space space if space open vertical bar straight x close vertical bar greater than 1 space space space space straight i. straight e. space if space either space straight x less than negative 1 space space space or space space straight x greater than 1
straight i. straight e. comma space space if space straight x element of space left parenthesis negative infinity comma space minus 1 right parenthesis space space or space space space straight x space space element of space left parenthesis 1 comma space infinity right parenthesis
straight i. straight e. comma space if space straight x space element of space left parenthesis negative infinity comma space minus 1 right parenthesis space space space union space space space space left parenthesis 1 comma space infinity right parenthesis
therefore space space space straight f left parenthesis straight x right parenthesis space is space strictly space increasing space on space 1.

107 Views

Advertisement
166.

Find the intervals in which the following function is decreasing:
f (x) = x– 12x

88 Views

167.

Find the intervals in which the function f given by f(x) = 2x2 – 3x is
(a) strictly increasing    (b) strictly decreasing

77 Views

168.

Find the intervals in which the function f given by f(x) = x2 – 4x+6  is
(a) strictly increasing    (b) strictly decreasing

82 Views

Advertisement
169.

Find the intervals in which the following functions are strictly increasing or decreasing:
x2+ 2x – 5

127 Views

170.

Find the intervals in which the following functions are strictly increasing or decreasing:
10 – 6x – 2x2

105 Views

Advertisement