Find the points at which the function f given by f (x) = (x –

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

231.

Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
straight f left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 1 right parenthesis squared plus 3 comma space space space space straight x space element of space space open square brackets negative 3 comma space space 1 close square brackets



88 Views

232.

Find the absolute maximum value and the absolute minimum value of
straight f left parenthesis straight x right parenthesis space equals space open parentheses 1 half minus straight x close parentheses squared space space plus space straight x space cubed space space space in space space space left square bracket negative 2 comma space space 2.5 right square bracket.

75 Views

 Multiple Choice QuestionsLong Answer Type

233.

Find the absolute maximum and minimum values of the function f given by
 f (x) = cos2x + sinx,  x ∊ [0, straight pi].

75 Views

Advertisement

234.

Find the points at which the function f given by f (x) = (x – 2)4 (x + 1 )3 has
(i) local maxima (ii) local minima (iii) point of inflexion .


Here,     straight f left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 2 right parenthesis squared space space space left parenthesis straight x plus 1 right parenthesis cubed
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 2 right parenthesis to the power of 4. space straight d over dx left parenthesis straight x plus 1 right parenthesis cubed space plus space left parenthesis straight x plus 1 right parenthesis cubed. space space straight d over dx left parenthesis straight x minus 2 right parenthesis to the power of 4
                 equals space left parenthesis straight x minus 2 right parenthesis to the power of 4. space 3 left parenthesis straight x plus 1 right parenthesis squared plus left parenthesis straight x plus 1 right parenthesis cubed. space 4 left parenthesis straight x minus 2 right parenthesis cubed
equals space left parenthesis straight x minus 2 right parenthesis cubed space left parenthesis straight x plus 1 right parenthesis squared space left square bracket 3 left parenthesis straight x minus 2 right parenthesis space plus space 4 left parenthesis straight x plus 1 right parenthesis right square bracket space equals space left parenthesis straight x minus 2 right parenthesis cubed space left parenthesis straight x plus 1 right parenthesis squared space left parenthesis 7 straight x minus 2 right parenthesis
        straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space gives space us space left parenthesis straight x minus 2 right parenthesis cubed space left parenthesis straight x plus 1 right parenthesis squared space left parenthesis 7 straight x minus 2 right parenthesis space equals space 0
therefore space space space space space space space straight x space equals space 2 comma space minus 1 comma space space 2 over 7
When x < 2 slightly, straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals negative ve
When x > 2 slightly, straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals space plus ve
therefore space space space space space at space straight x space equals space 2 comma space space straight f apostrophe left parenthesis straight x right parenthesis space changes space from space minus ve space to space plus ve
therefore space space straight f left parenthesis straight x right parenthesis space has space local space minima space at space straight x space equals space 2
When x < -1 slightly  f ' (x) = (-) (+) (-) = +ve
When x > -1 slightly, f ' (x) = (-) (+) (-) = +ve
therefore    at  x = -1,   f ' (x) does not change sign
therefore          x = -1 is a point of inflexion.
When space straight x thin space less than space 2 over 7 space space slightly comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis space equals space plus ve

When space straight x thin space greater than space 2 over 7 space slightly space comma space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals space minus ve
therefore space space space space at space straight x space equals space 2 over 7 comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space changes space form space plus ve space to space minus ve
therefore space space space straight f left parenthesis straight x right parenthesis space has space local space maxima space at space straight x space equals space 2 over 7

84 Views

Advertisement
Advertisement
235.

Examine the following function for extreme values:
f(x) = (x – 3)(x + 1)6

84 Views

 Multiple Choice QuestionsShort Answer Type

236.

Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
The constant function straight alpha

85 Views

237.

Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x2

84 Views

238.

Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
straight x cubed minus 3 space straight x

93 Views

Advertisement
239.

Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
cosx comma space space 0 space less than space straight x space less than straight pi

88 Views

240.

Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
sin space 2 straight x comma space space 0 space less than space straight x space less than straight pi


74 Views

Advertisement