If f(x) = 803x4 + 8x3 - 18x2 + 60,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

631.

If two sides of a triangle are given, then the area of the triangle will be maximum, if. the angle between the given sides is

  • π3

  • π4

  • π6

  • π2


Advertisement

632.

If f(x) = 803x4 + 8x3 - 18x2 + 60, then the points of local maxima for the function f(x) are

  • 1, 3

  • - 3, 1

  • - 1, 3

  • - 1, - 3


B.

- 3, 1

We have,      fx = 803x4 + 8x3 - 18x2 + 60 f'x = - 8012x3 + 24x2 - 36x3x4 + 8x3 - 18x2 + 60             = - 8012xx2 + 2x - 33x4 + 8x3 - 18x2 + 60            = - 8012xx - 1x + 33x4 + 8x3 - 18x2 + 60Put f'x = 0      x = 0, x = 1 and x = - 3Clearly, the sign scheme of f'x is

Hence, x = - 3 and x = 1 are the points of maxima.


Advertisement
633.

The adjacent sides of a rectangle with given parameter as 200 cm and enclosing minimum area are

  • 20 cm and 80 cm

  •  50 cm and 50 cm40 cm and 60 cm

  • 50 cm and 50 cm

  • 30 cm and 70 cm


634.

The altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is

  • r2

  • r3

  • 3r4

  • 4r3


Advertisement
635.

Let f(x) = x(x - 1)2, the point at which f(x) assumes maximum and minimum are respectively

  • 13, 1

  • 1, 13

  • 3, 1

  • None of these


636.

Rectangles are inscribed ina circle of radius r. The dimensions of the rectangle which has the maximum area, are

  • r, r

  • 2r, 2r

  • 2r, 2r

  • None of the above


637.

Let P(x) = a0 + a1x2 + a2x2 + a3x6 + ... + anx2n be a polynomial in a real variables with 0 < a0 < a1 < a2 < .... < an. The function P(x) has

  • neither a maxima nor a minima

  • only one maxima

  • both maxima and minima

  • only one minima


638.

The maximum value of f(x) = 2sinx + cos2x, 0  x  π2 occurs at x is equal to

  • 0

  • π6

  • π2

  • None of these


Advertisement
639.

The equation of tangent of the curve y = be-x/a at the point, where the curve meet y-axis is

  • bx + ay - ab = 0

  • ax + by - ab = 0

  • bx - ay - ab = 0

  • ax + by - ab = 0


640.

If y = 4x - 5 is a tangent to the curve y2 = px3 + q at (2, 3), then

  • p = 2, q = - 7

  • p = - 2, q = 7

  • p = - 2, q = - 7

  • p = 2, q = 7


Advertisement