The functions f(x) =xe - X, ∀ x ∈ 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

741.

The distance of the point on the curve x2 = 2y, which is nearest to the pont (0, 5) is

  • 3

  • 4

  • 22

  • None of these


742.

The minimum value of x - αx - β is

  • 0

  • αβ

  • 14α - β2

  • - 14α - β2


743.

The equation of tangent to the curve 6y = 7 - x3 at (1, 1) is

  • 2x + y = 3

  • x + 2y = 3

  • x + y = 1

  • x + y + 2 = 0


744.

The maximum value of xy subject to x + y = 7 is

  • 10

  • 12

  • 494

  • 554


Advertisement
745.

The family of curves in which the sub-tangent at any point to any curve is double the abscissa is given by

  • x = Cy2

  • y = Cx2

  • x2 = Cy2

  • y2 = Cx2


746.

If log (1 + x) -  2x2 + x is increasing, then

  • 0 < x < 

  • -  < x < 0

  • -  < x < 

  • - 1 < x < 2


Advertisement

747.

The functions f(x) =xe - X x  R attains a maximum value at x is equal

  • 1

  • 2

  • 1e

  • 3


A.

1

we have fx = xe - x             f'x = - xe - x + e - xFor maximum and minimum, put  f'x = 0   f''x = xe - x + e - x = 0  x = 1                          f''1 = 1 - 2e - 1 = - vefx is maximum at x = 1


Advertisement
748.

The approximate value of 1.00023000 is

  • 1·2

  • 1·4

  • 1·6

  • 1·8


Advertisement
749.

The sum of two numbers is 20. If the product of the square of one number and cube of the other is maximum, then the numbers are :

  • 12, 8

  • 3, 4

  • 9, 12

  • 15, 18


750.

Gas is being pumped into a spherical balloon at the rate of 30 ft3/min. The rate at which the radius increase when it reaches the value 15ft, is :

  • 130π ft/min

  • 115π ft/min

  • 120π ft/min

  • 125π ft/min


Advertisement