If x is real, then the minimum value of x2 - x&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

751.

The minimum value of 2x2 + x - 1 is :

  • - 14

  • 32

  • - 98

  • 98


752.

A point is moving on y = 4 - 2x2. The x-coordinate of the point is decreasing at the rate of 5 units/second. Then, the rate at which y coordinate of the point is changing when the point is at (1, 2) is

  • 5 units/s

  • 10 units/s

  • 15 units/s

  • 20 units/s


 Multiple Choice QuestionsMatch The Following

753.

Match the points on the curve 2y2 = x + 1 with the slopes of normals at those points and choose the correct answer.

      Point           Slope of the normal

A    (7, 2)         1 - 42

B    (0, 12)     2  - 8

C    (1, - 1)       3, 4

D    (3, 2)      4, 0

A. A B C D (i) 2 4 3 1
B. A B C D (ii) 2 5 3 1
C. A B C D (iii) 2 3 5 1
D. A B C D (iv) 2 5 1 3

 Multiple Choice QuestionsMultiple Choice Questions

754.

fx, y = 2x - y2 - x4 - y4 fxxfyy - fxy20, 0

  • 32

  • 16

  • 0

  • - 1


Advertisement
Advertisement

755.

If x is real, then the minimum value of x2 - x + 1x2 + x + 1, is

  • 13

  • 3

  • 12

  • 1


A.

13

Let fx = x2 - x + 1x2 + x + 1         ...iOn differentiating w.r.t. x, we getf'x = x2 - x + 12x - 1 - x2 - x + 12x + 1x2 + x + 12for maximum or minimum, put f'(x) = 0 x2 + x + 12x - 1 - x2 - x + 12x +1 = 0 x2 + x - 1 - - x2 + x + 1 = 0 2x2 - 2 = 0  x = ± 1Now, f'(x)= 2x2 - 2x2 + x + 12Again differentiating, we getx2 + x + 124x - 2x2 - 2f''x = 2x2 + x + 12x + 1x2 + x + 14at   x = 1, f''x > 0Therefore it is minimum at x = 1Put x = 1 in equation (i), we get  f1 = 1 - 1 + 11 + 1 + 1 = 13

Thus, minimum value is 13.


Advertisement
756.

A stone thrown upwards, has its equation of motion s = 490t - 4.9t2. Then the maximum height reached by it, is

  • 24500

  • 12500

  • 12250

  • 25400


757.

The radius of a circular plate is increasing at the rate of 0.01 cm/s when the radius is 12 cm. Then, the rate at which the area increases, is

  • 0.24 π cm/s

  • 60 π sq cm/s

  • 24π sq cm/s

  • 1.2π sq cm/s


758.

Observe the following statements

A: f(x) = 2x3 - 9x2 + 12x - 3 is increasing outside the interval (1, 2)

R : f'(x) < 0 for x  (1, 2).

Then, which of the following is true ?

  • Both A and R are true, and R is not the correct reason for A

  • Both A and R are true, and R is the correct reason for A

  • A is true but R is false

  • A is false but R is true


Advertisement
759.

If θ is the angle between the curves xy = 2 and x2 + 4y = 0 and x2 + 4y = 0, then tanθ is equal to :

  • 1

  • - 1

  • 2

  • 3


760.

In the interval(- 3, 3) the function f(x) = x3 + 3x, x  0 is

  • increasing

  • decreasing

  • neither increasing nor decreasing

  • partly increasing and partly decreasing


Advertisement