Find the area of the region in the first quadrant enclosed by th

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

21.

Draw a graph of straight x squared over 9 plus straight y squared over 25 space equals space 1 and evaluate area bounded by it.

121 Views

22. Using definite integrals, find the area of the ellipse straight x squared over 4 plus straight y squared over 9 space equals space 1
148 Views

23.

Draw a graph of straight x squared over 9 plus fraction numerator straight y squared over denominator 16 space end fraction space equals space 1 and evaluate area bounded by it.

112 Views

 Multiple Choice QuestionsShort Answer Type

24.

Using definite integrals, find the area of the ellipse straight x squared over straight a squared plus straight y squared over straight b squared equals 1.

259 Views

Advertisement
25.

Sketch the region of the ellipse and find its area, using integration.
straight x squared over straight b squared plus straight y squared over straight a squared equals 1.

135 Views

 Multiple Choice QuestionsLong Answer Type

26. Find the area of the region in the first quadrant enclosed by the x-axis, the line straight x equals square root of 3 space straight y and the circle x2 + y2 = 4.
155 Views

Advertisement

27. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x, and the circle x2 + y2 = 32.  


The equation of circle is
                      straight x squared plus straight y squared space equals space 32                   ...(1)
The equation of line is
                      y = x                                  ...(2)
From (1) and (2), we get
                     straight x squared plus straight x squared space equals space 32 space space or space space 2 space straight x squared space equals space 16
therefore space space space straight x squared space equals space 16 space space rightwards double arrow space space space space straight x space equals space 4 space space rightwards double arrow space space space straight y space equals space 4
therefore     circle (1) and line (2) meet in P(4, 4)
Radius OA of circle  = square root of 32 space equals space square root of 16 cross times 2 end root space equals space 4 square root of 2
therefore space space space straight A space is space left parenthesis 4 square root of 2 comma space 0 right parenthesis
Required area = Area OAP
                       = Area of increment OMP + area MAP
                       equals space straight A subscript 1 plus straight A subscript 2                                   ...(1)
where straight A subscript 1 space equals space integral subscript 0 superscript 4 space straight y space dx space equals space integral subscript 0 superscript 4 straight x space dx space equals space open vertical bar straight x squared over 0 close vertical bar subscript 0 superscript 4 space equals space 1 half open square brackets 16 minus 0 close square brackets space equals space 8
      straight A subscript 2 space equals space integral subscript 0 superscript 4 square root of 2 end superscript straight y space dx space equals space integral subscript 0 superscript 4 square root of 2 end superscript square root of 32 minus straight x squared end root space dx space equals space integral subscript 4 superscript 4 square root of 2 end superscript square root of left parenthesis square root of 32 right parenthesis squared minus straight x squared end root space dx
             equals space open square brackets fraction numerator straight x square root of 32 minus straight x squared end root over denominator 2 end fraction plus fraction numerator left parenthesis square root of 32 right parenthesis squared over denominator 2 end fraction sin to the power of negative 1 end exponent open parentheses fraction numerator straight x over denominator square root of 32 end fraction close parentheses close square brackets subscript 4 superscript 4 square root of 2 end superscript
equals space open square brackets fraction numerator 4 square root of 2 square root of 32 minus 32 end root over denominator 2 end fraction plus 32 over 2 sin to the power of negative 1 end exponent open parentheses fraction numerator 4 square root of 2 over denominator 4 square root of 2 end fraction close parentheses close square brackets minus open square brackets fraction numerator 4 square root of 32 minus 16 end root over denominator 2 end fraction plus 32 over 2 sin to the power of negative 2 end exponent open parentheses fraction numerator 4 over denominator 4 square root of 2 end fraction close parentheses close square brackets
space equals space left square bracket 0 plus 16 space sin to the power of negative 1 end exponent left parenthesis 1 right parenthesis right square bracket space minus space open parentheses fraction numerator 4 cross times 4 over denominator 2 end fraction plus 16 space sin to the power of negative 1 end exponent fraction numerator 1 over denominator square root of 2 end fraction close parentheses
equals space 16 space cross times space straight pi over 2 minus 8 minus 16 cross times straight pi over 4 space equals space 8 straight pi minus 8 minus 4 straight pi space equals 4 straight pi minus 8
therefore space space from space left parenthesis 1 right parenthesis comma space we space get
space space space space space space required space area space equals space 8 space plus space 4 straight pi minus 8 space equals space 4 straight pi space sq. space units.

637 Views

Advertisement
28.

Find the area bounded by the ellipse straight x squared over straight a squared plus straight y squared over straight b squared equals 1 space and space the spaceordinates x = a e and x = 0 where b2 = a2 (1 - e2) and e < 1.

286 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

29. Find the area of the region bounded by the parabola y = x2 + 1 and the lines y = x, x = 0 and x = 2.
153 Views

 Multiple Choice QuestionsLong Answer Type

30. Find the area of the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 3.
150 Views

Advertisement