Using integration, find the area of the region bounded by the tr

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

41.

Find the area bounded by the curve y = sin x between x = 0 and x = 2 straight pi.

103 Views

 Multiple Choice QuestionsLong Answer Type

42.

Using integration, find the area of the triangular region whose sides have the equations y = 2 x + 1, y = 3 x + 1 and x = 4.

132 Views

43. Using the method of integration find the area of the region bounded by lines:
2 x + y = 4, 3 x - 2 y = 6 and x - 3 y + 5 = 0.
161 Views

44.

Using integration, find the area of the region bounded by (2, 5), (4, 7) and (6, 2).

105 Views

Advertisement
45. Using the method of integration, find the area of the triangle ABC, co-ordinates of whose vertices are A (2, 0), B (4, 5), C (6, 3).
154 Views

Advertisement

46.

Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 1), (0, 5) and (3, 2).


Let A(-1, 1),  B(0, 5), C(3, 2) be the vertices of the given triangle.
The equation of AB is
         straight y minus 1 space equals space fraction numerator 5 minus 1 over denominator 0 plus 1 end fraction left parenthesis straight x plus 1 right parenthesis comma space space or space space straight y space minus space 1 space equals space 4 space left parenthesis straight x plus 1 right parenthesis
or   y = 4x + 5                       ...(1)
     The equation of BC is
       straight y minus 5 space equals space fraction numerator 2 minus 5 over denominator 3 minus 0 end fraction left parenthesis straight x minus 0 right parenthesis comma space space space or space straight y space minus 5 space equals space minus left parenthesis straight x minus 0 right parenthesis
 
or     straight y space equals space minus straight x plus 5                 ...(2)
     The equation of CA is
               straight y minus 2 space equals space fraction numerator 1 minus 2 over denominator negative 1 minus 3 end fraction left parenthesis straight x minus 3 right parenthesis comma space or space space straight y minus 2 space equals space 1 fourth left parenthesis straight x minus 3 right parenthesis

or            straight y space equals space straight x over 4 plus 5 over 4
Required area = Area of ∆ ABC
= Area of region AMOB + area of region BONC - area of region AMNC
equals space integral subscript negative 1 end subscript superscript 0 left parenthesis 4 straight x plus 5 right parenthesis space dx space plus space integral subscript 0 superscript 3 left parenthesis negative straight x plus 5 right parenthesis space dx space minus space integral subscript negative 1 end subscript superscript 3 open parentheses straight x over 4 plus 5 over 4 close parentheses space dx
equals space open square brackets 2 straight x squared plus 5 straight x close square brackets subscript 1 superscript 0 space plus open square brackets negative straight x squared over 2 plus 5 straight x close square brackets subscript 0 superscript 3 space minus space open square brackets straight x squared over 8 plus fraction numerator 5 straight x over denominator 4 end fraction close square brackets subscript negative 1 end subscript superscript 3
equals space open square brackets left parenthesis 0 plus 0 right parenthesis space minus space left parenthesis 2 minus 5 right parenthesis close square brackets space plus space open square brackets open parentheses negative 9 over 2 plus 15 close parentheses minus left parenthesis 0 plus 0 right parenthesis close square brackets space minus space open square brackets open parentheses 9 over 8 plus 15 over 4 close parentheses minus open parentheses 1 over 8 minus 5 over 4 close parentheses close square brackets
equals space 3 plus 21 over 2 minus 39 over 8 minus 9 over 8 space equals space fraction numerator 24 plus 84 minus 39 minus 9 over denominator 8 end fraction equals 60 over 8 equals 15 over 2 equals 7 1 half space sq. space units

286 Views

Advertisement
47. Using integration, find the area of the triangle ABC whose vertices have coordinates A (3, 0), B(4, 6) and C (6, 2).
144 Views

48. Using integration, find the area of the triangle ABC whose vertices are A (3, 0) B (4, 5) and C (5, 1).
182 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

49.

Using integration, find the area of the region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).

109 Views

 Multiple Choice QuestionsLong Answer Type

50.

Using integration find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

151 Views

Advertisement