Calculate the area enclosed in the region: from Mathematics App

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

61.

Find the area of the region {(x, y): x2 + y2 ≤ 1 ≤ x + y}.

105 Views

 Multiple Choice QuestionsLong Answer Type

62.

Find the area of the region bounded by the circle x2 + y2 = 1 and x + y = 1. Also draw a rough sketch.

151 Views

63.

Find the area of the region {(x, y): x2 ≤ y ≤ |x|}.
Or
Find the area of the region bounded by the parabola y = x2 and y = |x|.

178 Views

64. Draw the rough sketch and find the area of the region:
{(x, y) : y2 ≤ 8 x, x2 + x2 ≤ 9} 
149 Views

Advertisement
65. Find the area of the region {(x, y): y2 ≤ 4 x, 4x2 + 4 y2 ≤ 9}
102 Views

66. Find the area lying above x-axis and included between the circle x2 + y2 = 8 x and inside of the parabola y2 = 4 x.
975 Views

Advertisement

67. Calculate the area enclosed in the region:
open curly brackets left parenthesis straight x comma space straight y right parenthesis space semicolon space space straight x squared plus straight y squared space less or equal than space 1 space less than space straight x plus 1 half straight y close curly brackets


We are able to find the area included between the curves
                               straight x squared plus straight y squared space equals space 1                                 ...(1)
and                          straight x plus 1 half straight y space equals space 1                               ...(2)
From (1) and (2), we get,
                    open parentheses 1 minus 1 half straight y close parentheses squared space plus space straight y squared space equals space 1 space space space space space therefore space space space space 1 space plus straight y squared over 4 minus straight y plus straight y squared space equals space 1
therefore space space space 5 straight y squared minus 4 straight y space equals space 0 space space space space space rightwards double arrow space space space space space straight y left parenthesis 5 straight y minus 4 right parenthesis space equals space 0 space space rightwards double arrow space space space straight y space equals space 0 comma space 4 over 5
therefore space space from space left parenthesis 2 right parenthesis comma space space straight x space equals space 1 comma space space space 3 over 5
therefore circle (1) and line (2) intersect in points A (1, 0) and straight B open parentheses 3 over 5 comma space 4 over 5 close parentheses
Required area is shaded.
Required area = integral subscript 3 divided by 5 end subscript superscript 1 square root of 1 minus straight x squared end root space dx minus integral subscript 3 divided by 5 end subscript superscript 1 2 space left parenthesis 1 minus straight x right parenthesis space dx                     equals space open square brackets fraction numerator straight x square root of 1 minus straight x squared end root over denominator 2 end fraction plus 1 half sin to the power of negative 1 end exponent straight x close square brackets subscript 3 over 5 end subscript superscript 1 space plus space open square brackets left parenthesis 1 minus straight x squared right parenthesis close square brackets subscript 3 divided by 5 end subscript superscript 1
equals space open parentheses 0 plus 1 half sin to the power of negative 1 end exponent 1 close parentheses space minus space open parentheses 1 half 3 over 5 square root of 1 minus 9 over 25 end root plus 1 half sin to the power of negative 1 end exponent 3 over 5 close parentheses plus open parentheses 0 minus 4 over 25 close parentheses
equals space 1 half. straight pi over 2 minus 3 over 10.4 over 5 minus straight i over 2 sin to the power of negative 1 end exponent 3 over 5 minus 4 over 25 equals space open parentheses straight pi over 4 minus 2 over 5 minus 1 half sin to the power of negative 1 end exponent 3 over 5 close parentheses space sq. space units. space

116 Views

Advertisement
68. Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x. 

1016 Views

Advertisement
69. Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola y2= 4 x. 
650 Views

70. Draw a rough sketch of the region {(x, y): y2 ≤ 5 x, 5 x2 + 5 y2 ≤ 36} and find the area enclosed by the region using method of integration.
167 Views

Advertisement