For what value of n, are the nth terms of two APs: 63, 65, 67, . . . and 3, 10, 17, . . . equal?
Case I.
T4 + T8 = 24
⇒ a + (4 – 1)d + a + (8 – 1)d = 24
⇒ a + 3d + a + 7d = 24
⇒ 2a + 10d = 24
⇒ a + 5d = 12 ...(i)
Case II. T6 + T10 = 44
⇒ a + (6 – 1)d + a + (10 – 1)d = 44
⇒ a + 5d + a + 9d = 44
2a + 14d = 44
⇒ a + 7d = 22 ...(ii)
Subtracting (i) from (ii), we get
(a + 7d) – (a + 5d) = 22 – 12
⇒ a + 7d – a – 5d = 10
⇒ 2d = 10
⇒ d = 5