1 + C1ncosθ + C2ncos2θ +&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series 12 + 2.22 + 32 + 2.42 + 52 + 2.62 + .....
If B – 2A = 100λ, then λis equal to

  • 496

  • 232

  • 248

  • 464


192.

If log5xlogx3xlog3xy = logxx3, then y equals

  • 125

  • 25

  • 5/3

  • 243


193.

In the expansion of (x - 1) (x - 2) ... (x - 18), the coefficient of x17 is

  • 684

  • - 171

  • 171

  • - 342


Advertisement

194.

1 + C1ncosθ + C2ncos2θ + ... + Cnncos equals

  • 2cosθ2ncos2

  • 2cos22

  • 2cos2nθ2

  • 2cos2θ2n


A.

2cosθ2ncos2

1 + C1ncosθ + C2ncos2θ + ... + Cnncos

which is real part of complex number.

C0n + C1neie + ...,

i. e. ReC0n + C1neie + ...

Re1 + eien = Re1 + cosθ + isinθn

Re2cos2nθ2 + i2sinθ2.cosθ2

 1 + cosθ = 2cos2θ2 and sinθ = 2sinθ2 . cosθ2

2cosθ2nRecosθ2 + isinθ2n

2cosθ2nRecos2 + isin2

 By De moivre's theorem

2cosθ2n . cos2

 


Advertisement
Advertisement
195.

The number of irrational terms in the binomial expansion of 315 + 713100

  • 90

  • 88

  • 94

  • 95


196.

Let P(x) be a polynomial, which when divided by (x - 3) and (x - 5) leaves remainders 10 and 6, respectively. If the polynomial is divided by (x - 3) (x - 5), then the remainder is

  • - 2x + 16

  • 16

  • 2x - 16

  • 60


197.

the coefficient of x8 in ax2 + 1bx13 is equal to the coefficient of x- 8 in ax - 1bx213 then a and b will satisfy the relation

  • ab + 1 = 0

  • ab = 1

  • a = 1 - b

  • a + b = - 1


198.

Let 1 + x10 = r = 010crxT and r = 071 + x7 = drxT. If P = r = 05crxT and Q =  r = 03d2r + 1 , then PQ is equal to

  • 4

  • 8

  • 16

  • 32


Advertisement
199.

The coefficient of xn in the expansion of e7x + exe3x is

  • 4n - 1 - - 2n - 1n!

  • 4n - 1 - 2n - 1n!

  • 4n -  2nn!

  • 4n + - 2nn!


200.

The number (101)100 - 1 is divisible by

  • 104

  • 106

  • 108

  • 1012


Advertisement