The numerically greatest term in the expansion of (3 - 5x)11 when

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

221.

The numerically greatest term in the expansion of (3 - 5x)11 when x = 15, is

  • 55 × 39

  • 55 × 36

  • 45 × 39

  • 45 × 36


A.

55 × 39

We have,

3 - 5x11 = 3111 - 5x311                 = 3111 - 53 . 1511              x = 15                 = 3111 - 1311

Now, r = xn + 1x + 1           = - 1311 + 1- 13 + 1           = 443    r = 3

Therefore, 3rd(T3) and (3 + 1) = 4th (T4) terms are numerically greatest in the expansion of (3 - 5x)11.

Hence, greatest term = T3

                               = 311C21119- 132= 31111 × 101 . 2 . 9= 55 × 39

and T4 = 311C31118- 133           = 31111 × 10 × 91 . 2 . 3 . - 127           = 55 × 39

Hence, greatest term (numerically) = T3 = T4

        = 55 × 39


Advertisement
222.

The number of subsets of {1, 2, 3, ..., 9} containing atleast one odd number is

  • 324

  • 396

  • 496

  • 512


223.

A binary sequence is an array of 0's and 1's. The number of n-digit binary sequences which contain even number of 0's is

  • 2n - 1

  • 2n - 1

  • 2n - 1 - 1

  • 2n


224.

If X is a binomial variate with the range {0, 1, 2, 3, 4, 5, 6} and P(X = 2) = 4P(X = 4), then the parameter p of X is

  • 13

  • 12

  • 23

  • 34


Advertisement
225.

The number of integral solutions of x1 + x2 + x3 = 0, with x - 5, is :

  • C215

  • C216

  • C217

  • C218


226.

If Cr - 1n = 36, Crn = 84 and  Cr + 1n = 126, then n is equal to

  • 8

  • 9

  • 10

  • 11


227.

Coefficient of xn in the expansion of 1 + a + bx1! + a + bx22! + a + bx33! + ...

  • ea . bnn!

  • b . ann

  • eb . bnn - 1!

  • an . bn - 1n!


228.

The value of C1 - 2 . C2 + 3 . C3 - 4 . C4 + ... where CrCrn will be

  • - 1

  • 1

  • 0

  • None of these


Advertisement
229.

The middle term in the expansion of ba5 - 5ab12 is

  • C612ba3

  • - C612ba3

  • C712ba5

  • - C712b5a


230.

The coefficient of x4 in the expansion of (1 + x + x2 + x3)11 is

  • 990

  • 605

  • 810

  • None of these


Advertisement