The number of subsets of {1, 2, 3, ..., 9} containing atleast one

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

221.

The numerically greatest term in the expansion of (3 - 5x)11 when x = 15, is

  • 55 × 39

  • 55 × 36

  • 45 × 39

  • 45 × 36


Advertisement

222.

The number of subsets of {1, 2, 3, ..., 9} containing atleast one odd number is

  • 324

  • 396

  • 496

  • 512


C.

496

The total number of subsets of given set is 29 = 512

Even numbers are {2, 4, 6, 8}.

Case I : When selecting only one even number.

                = C14 = 4

Case II : When selecting only two even numbers

                = C24 = 6

Case III : When selecting only three even numbers

               = C34 = 4

Case IV : When selecting only four even numbers

               = C44 = 1

Therefore, number of ways

               = 512 - (4 + 6 + 4 + 1) - 1

               = 496

                  [ Here, we substract 1 for due to the null set]


Advertisement
223.

A binary sequence is an array of 0's and 1's. The number of n-digit binary sequences which contain even number of 0's is

  • 2n - 1

  • 2n - 1

  • 2n - 1 - 1

  • 2n


224.

If X is a binomial variate with the range {0, 1, 2, 3, 4, 5, 6} and P(X = 2) = 4P(X = 4), then the parameter p of X is

  • 13

  • 12

  • 23

  • 34


Advertisement
225.

The number of integral solutions of x1 + x2 + x3 = 0, with x - 5, is :

  • C215

  • C216

  • C217

  • C218


226.

If Cr - 1n = 36, Crn = 84 and  Cr + 1n = 126, then n is equal to

  • 8

  • 9

  • 10

  • 11


227.

Coefficient of xn in the expansion of 1 + a + bx1! + a + bx22! + a + bx33! + ...

  • ea . bnn!

  • b . ann

  • eb . bnn - 1!

  • an . bn - 1n!


228.

The value of C1 - 2 . C2 + 3 . C3 - 4 . C4 + ... where CrCrn will be

  • - 1

  • 1

  • 0

  • None of these


Advertisement
229.

The middle term in the expansion of ba5 - 5ab12 is

  • C612ba3

  • - C612ba3

  • C712ba5

  • - C712b5a


230.

The coefficient of x4 in the expansion of (1 + x + x2 + x3)11 is

  • 990

  • 605

  • 810

  • None of these


Advertisement