A triangle ABC is drawn to circumscribe a circle of radius 4 cm

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

231.

A quadrilateral ABCD is drawn to circumscribe a circle. Prove that
AB + CD = AD + BC.

283 Views

232. In Fig. 10.13, XY and X′Y′ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X′Y′ at B. Prove that ∠ AOB = 90°. 

Fig. 10.13
219 Views

233.

Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

620 Views

234. Prove that the parallelogram circumscribing a circle is a rhombus.
289 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

235.

A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig. 10.14). Find the sides AB and AC.        

 
Fig, 10.14


Let O be the incentre of ΔABC such that      
OD = OE = OF = 4 cm.
Also, BD = 6 cm, CD = 8 cm.    
Since, length of tangents drawn from an external point are equal.  


Let O be the incentre of ΔABC such that      OD = OE = OF = 4 cm. 
Fig. 10.14 

So,    BD = BF = 6 cm
and,    CD = CE = 8 cm
Let the length of tangents drawn from first vertex be x.
⇒    AF = AE = x
[Tangents from external point A]
Now, sides of triangle arc
 
              AB  = x + 6 = c 
              BC  = 6 + 8 = 14 = a
and         AC =  x + 8 = b

We know that :   S = fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction 
rightwards double arrow space                   S = fraction numerator 14 plus straight x plus 8 plus straight x plus 6 over denominator 2 end fraction
rightwards double arrow                    S = fraction numerator 2 straight x plus 28 over denominator 2 end fraction equals space straight x plus 14

Therefore,
Area of ΔABC

equals square root of straight s open parentheses straight s minus straight a close parentheses left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Using space Heron apostrophe straight s space Formula right square bracket
equals square root of left parenthesis straight x plus 14 right parenthesis left parenthesis straight x plus 14 minus 14 right parenthesis left parenthesis straight x plus 14 minus straight x minus 8 right parenthesis left parenthesis straight x plus 14 minus straight x minus 6 right parenthesis end root
equals square root of straight x left parenthesis straight x plus 14 right parenthesis left parenthesis 6 right parenthesis left parenthesis 8 right parenthesis end root
equals square root of 48 straight x left parenthesis straight x plus 14 right parenthesis end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis

Also, area of increment ABC,
= Area of increment BOC + Area of increment AOC + incrementAOB 

equals 1 half straight x space BC space straight x space OD space plus space 1 half straight x space AC space straight x space OE space plus 1 half straight x space AB space straight x space OF

equals space 1 half cross times 14 cross times 4 plus 1 half cross times left parenthesis straight x plus 8 right parenthesis cross times 4 plus 1 half cross times left parenthesis straight x plus 6 right parenthesis cross times 4
= 28 + 2 (x + 8) + 2 (x + 6)
= 28 + 2x + 16 + 2x + 12
= 4x + 56                                                ...(ii)

Comparing (i) and (ii), we get

        square root of 48 straight x left parenthesis straight x plus 14 right parenthesis end root space equals space 4 straight x space plus space 56
Squaring both sides, we get
      48x (x + 14) = (4x + 56 )   
rightwards double arrow  48x (x + 14) = (4 (x + 14)]
rightwards double arrow  48x (x + 14) = 16 (x + 14)]
rightwards double arrow   3x (x + 14) = (x + 14)
rightwards double arrow  3x (x + 14) - (x + 14) = 0
rightwards double arrow space (x + 14) [3x - (x + 14)] = 0
rightwards double arrow   3x - x - 14 = 0
rightwards double arrow   2x - 14 = 0
rightwards double arrow          2x = 14
rightwards double arrow            x = 7

Hencem    AB = x + 6
                     = 7 + 6 = 13 cm
and           AC = x + 8
                     = 7 + 8 = 15 cm.
 

1615 Views

Advertisement
236.

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

472 Views

 Multiple Choice QuestionsShort Answer Type

237. From a point P, the length of the tangent to a circle is 15 cm and distance of P from the centre of the circle is 17 cm. Then what is the radius of the circle?
3033 Views

238. In Fig. 10.18, PA is a tangent from an external point P to a circle with centre O. If ∠POB = 115°, then find ∠APO.



1280 Views

Advertisement
239. In Fig. 10.19, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If CP = 11 cm and BC = 7 cm, then find the length of BR.


1334 Views

240. From a point P, 10 cm away from the centre of a circle, a tangent PT of length 8 cm is drawn. What is the radius of the circle?
844 Views

Advertisement