Prove that the tangent at any point of a circle is perpendicular

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

351.

In Fig., a circle touches the side DF of EDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of EDF (in cm) is:

                            

  • 18

  • 13.5

  • 12

  • 9


 Multiple Choice QuestionsShort Answer Type

352.

Tangents PA and PB are drawn from an external point P to two concentric circle with centre O and radii 8 cm and 5 cm respectively, as shown in Fig., If AP = 15 cm, then find the length of BP.

                           


 Multiple Choice QuestionsLong Answer Type

353.

In fig., an isosceles triangle ABC, with AB =AB, circumscribes a circle. Prove that the point of contact P bisects the base BC.

                            

                                            OR

In fig., the chord AB of the larger of the two concentric circles, with centre O, touches the smaller circle at C. Prove that AC = CB.

                                   


354.

Prove that the parallelogram circumscribing a circle is a rhombus.


                                       OR


Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.


Advertisement
Advertisement

355.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.


                                   OR


A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC.


                   

Given: AB is tangent to a circle with centre O.

 

To prove: OP is perpendicular to AB.

 

Constructions: Take a point Q on AB and join OQ.

 

Proof: Since Q is a point on the tangent AB, other than the point of contact P, so Q will be outside the circle.

Let OQ intersect the circle at R.

Now OQ = OR + RQ

 OQ> OR  OQ > OP      .......[as   OR = OP] OP < OQ

Thus OP is shorter than any other segment among all and the shortest length is the perpendicular from O on AB.

 OP  AB. Hence proved.

 

                                             OR

 

                                 

Let ABCD be a quadrilateral, circumscribing a circle.

Since the tangents drawn to the circle from an external point are equal,

we have,   

AP = AS       ..........(1)

BP = BQ       ..........(2)

RC = QC       ..........(3)

DR = DS       ..........(4)

Adding, (1), (2), (3) and (4), we get

AP + PB + RC + DR = AS + BQ + QC + DS

(AP + PB ) + (RC + DR ) = (AS + DS ) + (BQ + QC)

AB + CD = AD + BC.

 

                


Advertisement
Advertisement