Let the vertex of an angle ABC be located outside a circle and l

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

101.

In the figure below, ABC is a triangle in which ∠BAC = 30°. Show that BC is equal to radius of the circumcircle where centre is O.

164 Views

102. In the figure straight lines AB and CD pass through the centre O of the circle. If ∠OCE = 40° and ∠AOD = 75°, find ∠CDE and ∠OBE.


738 Views

103. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
168 Views

 Multiple Choice QuestionsLong Answer Type

104.

Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.

2062 Views

Advertisement
105.

The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?

1922 Views

Advertisement

106.

Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.



Let ∠ABC = x, ∠AOC = y and ∠DOE = z.∠C'OD + ∠A'OE = z - y ?


Let ∠ABC = x, ∠AOC = y and ∠DOE = z.
∠C'OD + ∠A'OE = z - y    ...(1)
Let    ∠C'OD = ө
Then ∠A'OE = z - y - ө
| From (1)
∠AOD = π - (∠AOC + ∠C'OD)
= π - (y + ө)
∠COE = π - (∠C'OA' + ∠A'OE)
= π - (y + z - y - ө)
= π - (z - ө)
∵ AD = CE
∴ ∠AOD = ∠COE
| Equal chords subtend equal angles at the centre

therefore space space space straight pi minus left parenthesis straight y plus straight theta right parenthesis equals straight pi minus left parenthesis straight x minus straight theta right parenthesis
rightwards double arrow space space space straight y plus straight theta equals straight z minus straight theta
rightwards double arrow space space space space 2 straight theta equals straight z minus straight y
rightwards double arrow space space space straight theta equals fraction numerator straight z minus straight y over denominator 2 end fraction
space space space space space space space space space space space therefore space space angle straight C apostrophe OD equals fraction numerator straight z minus straight y over denominator 2 end fraction
and space space space space space angle straight A apostrophe OE equals straight z minus straight y minus fraction numerator straight z minus straight y over denominator 2 end fraction equals fraction numerator straight z minus straight y over denominator 2 end fraction
space space space therefore space space angle AOD equals straight pi minus left parenthesis straight y plus straight theta right parenthesis
space space space space space space space space space space space space space space space space space space space space space equals straight pi minus open parentheses straight y plus fraction numerator straight z minus straight y over denominator 2 end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space equals straight pi minus open parentheses fraction numerator straight y plus straight z over denominator 2 end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space equals space angle COE

In ∆OAD,
∵ OA = OD | Radii of the same circle
∴ ∠OAD = ∠ODA
| Angles opposite to the same sides of a triangle are equal
In ∆OAD,
∠OAD + ∠ODA + ∠AOD = π
| Sum of all the angles of a triangle is π radians

rightwards double arrow space space angle OAD plus angle OAD plus straight pi minus open parentheses fraction numerator straight y minus straight z over denominator 2 end fraction close parentheses equals straight pi
rightwards double arrow space space 2 angle OAD equals fraction numerator straight y plus straight z over denominator 2 end fraction
rightwards double arrow space space angle OAD equals fraction numerator straight y plus straight z over denominator 4 end fraction
Similarly comma space space space space angle OCE equals fraction numerator straight y plus straight z over denominator 4 end fraction
space space space space space space space space space space space space space space space angle OAB equals straight pi minus open parentheses fraction numerator straight y plus straight z over denominator 4 end fraction close parentheses
In quardrilateral AOCB
 
angle ABC plus angle OAB plus angle OCB plus angle AOC equals 2 straight pi

                [ Sum of all the angles of a quardrilateral is 2 straight pi radians ]

rightwards double arrow space space space space space space straight x plus straight pi minus open parentheses fraction numerator straight y plus straight z over denominator 4 end fraction close parentheses plus straight pi minus open parentheses fraction numerator straight y plus straight z over denominator 4 end fraction close parentheses plus straight y equals 2 straight pi
rightwards double arrow space space space space space space straight x plus straight y space equals space fraction numerator straight y plus straight z over denominator 2 end fraction
rightwards double arrow space space space space space space 2 straight x plus 2 straight y equals straight y plus straight z
rightwards double arrow space space space space space space 2 straight x space equals space straight z space minus space straight y
rightwards double arrow space space space space space space straight x equals fraction numerator straight z minus straight y over denominator 2 end fraction
Hence, the result.

597 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

107. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of Us diagonals.
263 Views

108. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.
571 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

109.

AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters, (ii) ABCD is a rectangle.

619 Views

110. Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle are 90 degree minus 1 half straight A comma space 90 degree minus 1 half straight B space and space 90 degree minus 1 half straight C.
399 Views

Advertisement