Given that, x is a real number satisfying 5x2 - 26

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

131.

If α and β are roots of ax + bx + c = 0, then the equation whose roots are α2 and β2 is

  • a2x2 - (b2 - 2ac)x + c2 = 0

  • a2x2 + (b2 - ac)x + c2 = 0

  • a2x2 + (b2 + ac)x + c2 = 0

  • a2x2 + (b2 + 2ac)x + c2 = 0


132.

If the equation x2 + y2 - 10x + 21 = 0 has real roots x = α and y = β, then

  • 3  x  7

  • 3  y  7

  • - 2  x  2

  • - 2  x  2


133.

If α and β are the roots of x2 - px +1 = 0 and γ is aroot of x2 + px +1 = 0, then α + γβ + γ is

  • 0

  • 1

  • - 1

  • ρ


134.

The quadratic expression 2x +12 - px + q  0 for any real x, if

  • p2 - 16p - 8q < 0

  • p2 - 8p + 16q < 0

  • p2 - 8p - 16q < 0

  • p2 - 16p + 8q < 0


Advertisement
135.

Let f: R  R be defmed as f(x) = x2 - x + 4x2 +  x + 4 Then, range of the function f(x) is

  • 35, 53

  • 35, 53

  • - , 35  53, 

  • - 53, - 35


136.

The least value of 2x2 + y2 + 2xy + 2x -3y + 8 for real numbers x and y, is

  • 2

  • 8

  • 3

  • - 1/2


137.

Find the maximum value of z when z - 3z = 2, where z being a complex number.

  • 1 + 3

  • 3

  • 1 + 2

  • 1


Advertisement

138.

Given that, x is a real number satisfying 5x2 - 26x + 53x2 - 10x + 3 < 0, then

  • x < 15

  • 15 < x < 3

  • x > 5

  • 15 < x < 13 or 3 < x < 5


D.

15 < x < 13 or 3 < x < 5

We have,

5x2 - 26x + 53x2 - 10x + 3 < 0 5x2 - 26x + 53x2 - 9x - x + 3 < 0 5xx - 5 - 1x - 53xx - 3 - 1x - 3 < 0 x - 55x - 1x - 33x - 1 < 0 x  15, 13  3, 5


Advertisement
Advertisement
139.

If (2 + i) and 5 - 2i are the roots of the equation (x2 + ax + b )(x2 + ex + d) = 0, where a, b, c and d are real constants, then product of all the roots of the equation is

  • 40

  • 95

  • 45

  • 35


140.

Which of the following is /are always false?

  • A quadratic equation with rational coefficients has zero or two irrational roots

  • A quadratic equation with real coefficients has zero or two non-real roots

  • A quadratic equation with irrational coefficients has zero or two irrational roots

  • A quadratic equation with integer coefficients has zero or two irrational roots


Advertisement