If α, β are the roots of the quadratic

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

141.

The number of solution(s) of the equation x + 1 - x - 1 = 4x - 1 is/are

  • 2

  • 0

  • 3

  • 1


142.

The value of z2 + z - 32 + z - i2 is minimum when z equals

  • 2 - 23i

  • 45 + 3i

  • 1 + i3

  • 1 - i3


143.

The solution of the equation log101log7x + 7 + x = 0 is

  • 3

  • 7

  • 9

  • 49


144.

In a ABCtanA and tanB are the roots of pq(x2 + 1) = r2x. Then, ABC is

  • a right angled triangle

  • an acute angled triangle

  • an obtuse angled triangle

  • an equilateral triangle


Advertisement
145.

Let f(x) = 2x+ 5x + 1. If we write f(x) as f(x) = a(x + 1)(x - 2) + b(x - 2)(x - 1) + c(x - 1)(x + 1) for real numbers a, b, c then

  • there are infinite number of choices for a, b, c

  • only one choice for a but infinite number of choices for b and c

  • exactly one choice for each of a, b, c

  • more than one but finite number of choices for a, b, c


146.

If α, β are the roots of ax2 + bx + c = 0 (a  0) and α + h, β + h are the roots of px2 + qx + r = 0 (p  0), then the ratio of the squares of their discriminants is

  • a2 : p2

  • a : p2

  • a2 : p

  • a : 2p


147.

Suppose that z1, z2, z3 are three vertices of an equilateral triangle in the Argand plane. Let α = 123 + i and β be a non-zero complex number. The points αz1 + β, αz2 + β, αz3 + β will be

  • the vertices of an equilateral triangle

  • the vertices of an isosceles triangle 

  • collinear

  • the vertices of a scalene triangle


148.

In the Argand plane, the distinct roots of 1 + z + z3 + z4 = 0 (z is a complex number) represent vertices of

  • a square

  • an equilateral triangle

  • a rhombus

  • a rectangle


Advertisement
149.

Let α, β be the roots of x2 - x - 1 = 0 and Sn = αn + βn, for all integers n  1. Then, for every integer n  2

  • Sn + Sn - 1 = Sn +1

  • Sn - Sn - 1 = Sn +1

  • Sn - 1 = Sn +1

  • Sn + Sn - 1 = 2Sn +1


Advertisement

150.

If α, β are the roots of the quadratic equation x2 + px + q = 0, then the values of α3 + β3 and α4 + α2β2 + β4 are respectively

  • 3pq - p3 and p4 - 3p2q + 3q2

  • - p(3q - p2) and (p2 - q)(p2 + 3q)

  • pq - 4 and p4 - q4

  • 3pq - p3 and (p2 - q)(p2 - 3q)


D.

3pq - p3 and (p2 - q)(p2 - 3q)

From the given information, we get

Sum of roots, α + β = - p and αβ = q

   α3 + β3 = α + β3 - 3αβα + β                       = - p3 - 3q- p                       = - p3 + 3pq

    α4 + α2β2 + β4 = α4 + β4 + αβ2                                = α2 + β2 - αβ2                                = α + β2 - 2αβ2 - αβ2                                = - p2 - 2q2 - 3q2                                = p2 - 2q2 - 3q2                                = p4 - 4p2q +4q2 - q2                                = p4 - 4p2q + 3q2                                = p4 - 3p2q + p2q + 3q2                               = p2p2 - 3q - qp2 - 3q                               = p2 - 3qp2 - q


Advertisement
Advertisement