If the area of the triangle on the complex plane formed by the po

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

201.

If α is an nth root of unity, then 1 + 2α + 3α2 + ... + n - 1equals

  • - n1 - α

  • - n1 + α2

  • n1 - α

  • None of these


202.

If z  3, then the least value of z + 14

  • 112

  • 114

  • 3

  • 14


203.

If the complex number z lies on a circle with centre at the origin and radius = 14, then the 4 complex number - 1 + 8z lies on a circle with radius

  • 4

  • 1

  • 3

  • 2


204.

If x2 + x + 1 = 0, then the value of n = 16xn + 1xn2 is

  • 13

  • 12

  • 9

  • 14


Advertisement
205.

If x + iy = 32 + cosθ + isinθ,  then x2 + y2 is equal to

  • 3x - 4

  • 4x - 3

  • 4x + 3

  • None of these


206.

If z + 4  3 then the greatest and the least value of z + 1 are

  • - 1, 6

  • 6, 0

  • 6, 3

  • None of these


Advertisement

207.

If the area of the triangle on the complex plane formed by the points z, z + iz and iz is 200, then the value of 3lz I must be equal to

  • 20

  • 40

  • 60

  • 80


C.

60

Let z = x + iy, then

z + iz = x + iy + i(x + iy) = (x - y) + i(x + y)

and iz = i(x + iy) = - y + ix,

Then, the area of the triangle formed by these lines is

 = 12xy1x - yx + y1- yx1Applying R2 > R2 - (R1 + R3), = 12xy100- 1- yx1 = 12x2 + y2 12z2 = 200                as given          z2 = 400  z = 20     3z = 3 × 20 = 60


Advertisement
208.

A cmplex number z is such that argz - 2z + 2 = z3. The points representing this complex number will lie on

  • an ellipse

  • a parabola

  • a circle

  • a straight line


Advertisement
209.

If x2 -  x - 6 = x + 2, then the values of x are

  • - 2, 2, - 4

  • - 2, 2, 4

  • 3, 2, - 2

  • 4, 4, 3


210.

If α and β are the roots of x2 - ax + b = 0 and if αn and βn = Vn, then

  • V+ 1 = aVn + bVn - 1

  • V+ 1 = aVn + aVn - 1

  • V+ 1 = aVn - bVn - 1

  • V+ 1 = aVn - 1 + bVn


Advertisement