If the complex numbers z, z, and origin form vertices of an equil

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

231.

Let α, β be the roots of the equation x2 - ax + b = 0 and An = αn + βn. Then, An + 1 - aAn + bAn - 1 is equal to

  • - a

  • b

  • 0

  • a - b


232.

If b2  4ac for the equation ax4 + bx2 + c = 0, then all the roots of the equation will be real if:

  • b > 0, a < 0, c > 0

  • b < 0, a > 0, c > 0

  • b > 0, a > 0, c > 0

  • b > 0, a > 0, c < 0


233.

If x > 0 and log3(x) + log3x + log3x4 + log3x8 + log3x16 = 4, then x equals:

  • 9

  • 81

  • 1

  • 27


234.

The number of real roots of the equation x + 1x3 + x + 1x = 0 is :

  • 0

  • 2

  • 4

  • 6


Advertisement
235.

The imaginary part of 1 +i2i2i - 1 is :

  • 45

  • 0

  • 25

  • - 45


236.

If x = 123 + i, then x3 is equal to

  • 1

  • - 1

  • i

  • - i


237.

If the complex numbers sin(x) + icos(2x) and cos(x) - isin(2x) are complex conjugate to each other, then the value of x is

  • π4

  • π8

  • 3π4

  • None of these


238.

If the equation (a2 + 4a + 3)x2 + (a2 - a - 2).x + a(a + 1) = 0 has more than two roots, then values of a is

  • 0

  • 1

  • - 1

  • None of the above


Advertisement
239.

If A(z1), B(z2), C(z3) and P(z) represent complex numbers such that z1 - z = z2 - z = z3 - z, then, A, B, C lies on

  • a straight line

  • a circle

  • a parabola

  • an ellipse


Advertisement

240.

If the complex numbers z, z, and origin form vertices of an equilateral triangle, then the value of z12 + z22 will be

  • z1z2

  • z1 + z2

  • 2z1z2

  • z1 - z2


A.

z1z2

We know that, if z1, z2 and z3 are the vertices of an equilateral triangle, then

z12 + z22 + z32 = z1z2 + z2z3 + z3z1

Here,           z3 = 0

     z12 + z22 = z1z2


Advertisement
Advertisement