If α, β, γ are the 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

271.

If 3 is a root of x2 + kx - 24 = 0. It is also a root of

  • x2 + 5x + k = 0

  • x2 + kx + 24 = 0

  • x2 - kx + 6 = 0

  • x2 - 5x + k = 0


272.

To remove the second term of the equation x4 - 8x3 + x2 - x + 3 = 0, diminish the roots of the equation by

  • 1

  • 2

  • 3

  • 4


273.

The maximum possible number of real roots of the equation x5 - 6x2 - 4x + 5 = 0 is

  • 0

  • 3

  • 4

  • 5


274.

If α, β, γ are the roots of the equation x3 + ax2 + bx + c = 0,then α - 1β -1γ -1 is equal to

  • ac

  • ca

  • bc

  • None of these


Advertisement
275.

If 1 + 3i2 is a root of the equation x4 - x2 + x - 1 = 0.Then, its real roots are

  • 1, 1

  • - 1, - 1

  • 1, 2

  • 1, - 1


Advertisement

276.

If α, β, γ are the roots of 2x3 - 2x - 1 = 0, then αβ2 is equal to

  • - 1

  • 1

  • 2

  • 3


B.

1

α,  β,  γ are the roots of equation               2x3 - 2x - 1 = 0or  2x3 +0x2 - 2x - 1 = 0         αβ + βγ + γα = - 22 = - 1                       αβ2  = αβ + βγ + γα = -1 2 = 1


Advertisement
277.

If z= x +iy is a complex number satisfying z + i22 = z - i22, then the locus of z is

  • x-axis

  • y-axis

  • y = x

  • 2y = x


278.

If 1 - i is a root of the equation x2 + 9x + b = 0, then b is equal to

  • 1

  • - 1

  • - 2

  • 2


Advertisement
279.

If α, β, γ are the roots of the equation x3 + 4x + 1 = 0, then α + β-1 + β + γ-1 + γ + α-1 is equal to

  • 2

  • 3

  • 4

  • 5


280.

Let a  0 and p(x) be a polynomial of degree greater than 2. If p(x) leaves remainders a and - a when divided respectively by x + a and x - a, then the remainder when p(x) is divided by x2 - a2 is:

  • x

  • - x

  • - 2x

  • 2x


Advertisement