The cubic equation whose roots are thrice to each of the roots of

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

301.

If 1, 2, 3 and 4 are the roots of the equation x4 + ax3 + bx2 + cx + d = 0, then a + 2b + c is equal to

  • - 25

  • 0

  • 10

  • 24


302.

If α, β, γ are the roots of x3 - 2x2 + 3x - 4 = 0, then the value of α2β2 + β2γ2 + γ2α2 is

  • - 7

  • - 5

  • - 3

  • 0


303.

The locus of the point z = x + iy satisfying z - 2iz + 2i = 1 is  

  • x-axis

  • y-axis

  • y = 0

  • x = 2


304.

A value of n such that 32 +i2n = 1 is

  • 12

  • 3

  • 2

  • 1


Advertisement

 Multiple Choice QuestionsMatch The Following

305.

If a = 1 - i32, then the correct matching of List-I from List-II is

         List-I                       List-II

(i)      aa                            - π3

(ii)    arg1a                       - i3

(iii)    a - a                        2i3 

(iv)     Im43a                    1

                                        π3

                                        23

correct match is 

A. (i) (ii) (iii) (iv) (i) D E C B
B. (i) (ii) (iii) (iv) (ii) D A B F
C. (i) (ii) (iii) (iv) (iii) F E B C
D. (i) (ii) (iii) (iv) (iv) D A B C

 Multiple Choice QuestionsMultiple Choice Questions

306.

The points in the set z  C : argz - 2z - 6i = π2 (where C denotes the set of all complex numbers) lie on the curve which is a

  • circle

  • pair of lines

  • parabola

  • hyperbola


307.

If w is a complex cube root of unity, then sinw10 + w23π - π4 is equal to

  • 12

  • 12

  • 1

  • 32


308.

If m1, m2, m3 and m4 respectively denote the moduli of the complex numbers 1 + 4i, 3 + i, 1 - i and 2 - 3i, then the correct one, among the following is

  • m1 < m2 < m3 < m4

  • m4 < m3 < m2 < m1

  • m3 < m2 < m4 < m1

  • m3 < m1 < m2 < m4


Advertisement
309.

If α + β = - 2 and α3 + β3 = - 56, thenthe quadratic equation whose roots are α and β 

  • x2 + 2x - 16 = 0

  • x2 + 2x + 15 = 0

  • x2 + 2x - 12 = 0

  • x2 + 2x - 8 = 0


Advertisement

310.

The cubic equation whose roots are thrice to each of the roots of x3 + 2x2 - 4x + 1 = 0 is

  •  x3 + 6x2 - 36x + 27 = 0

  •  x3 + 6x2 + 36x + 27 = 0

  •  x3 - 6x2 - 36x + 27 = 0

  •  x3 - 6x2 + 36x + 27 = 0


A.

 x3 + 6x2 - 36x + 27 = 0

Given equation isx3 + 2x2 - 4x +1 = 0Let α,  β and γ be the roots of the given equation α + β + γ = -2αβ + βγ + γα = - 4and αβγ = - 1Let the required cubic equation has the roots 3α, 3β and 3γ3α + 3β + 3γ = - 6,3α . 3β + 3β . 3γ + 3γ . 3α = - 36and 3α . 3β . 3γ = - 27Required equation isx3 - - 6x2 + - 36x - 27 = 0 x3 + 6x2 - 36x + 27 = 0


Advertisement
Advertisement