If α and β are the roots

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

If z1, zare complex numbers such that Re(z1) = |z= 1| and Re(z2) = |z2 = 1| and arg (z1 – z2) = π6, then Im (z1 + z2) is equal to :

  • 23

  • 32

  • 13

  • 23


362.

If a and b are real numbers suchthat (2 + α)4 = a + bα, where α =  - 1 + i32 then a + b is equal to :

  • 33

  • 24

  • 9

  • 57


363.

Let λ  0 be in R. If α and β are the roots of the equation, x2  x + 2λ = 0 and α and γ are the roots of the equation, 3x2  10x + 27λ = 0, then βγλ is equal to 

  • 27

  • 36

  • 9

  • 18


364.

If α is the positive root of the equation, p(x) = x2  x  2 = 0, thenlimxα1 - cospxx +α - 4 = ?

  • 32

  • 32

  • 12

  • 12


Advertisement
365.

The product of the roots of the equation 9x2 – 18|x| + 5 = 0 is

  • 2581

  • 527

  • 259

  • 59


366.

If the four complex numbers z, z, z - 2Rez and z - 2Rez represent the vertices of a square of side 4 units in the Argand plane, then |z| is equal to :

  • 4

  • 2

  • 42

  • 22


Advertisement

367.

If α and β are the roots of the equation, 7x2  3x  2 = 0, then the value of α1 - α2 + β1 - β2 is equal to 

  • 124

  • 2736

  • 2716

  • 38


C.

2716

α + β = 37, αβ = - 27α1 - α2 + β1 - β2 = α + β - αβα + β1 - α21 - β2 = α + β - αβα + β1 + αβ2 - α2 + β2 α + β - αβα + β1 + αβ2 - α2 + β2 + 2αβ = 37 + 27371 + 272 - 372 - 227 = 2716


Advertisement
368.

The value of  - 1 + i31 - i30 is : 

  • 65

  • 215i

  • - 215

  •  - 215i


Advertisement
369.

The region represented by z = x + iy  C : z - Rez  1 is also given by the inequality

  • y2  2x + 1

  • y2  x + 12

  • y2    2x +1

  • y2  x + 1


370.

If α and β be two roots of the equation x2 – 64x + 256 = 0. Then the value of α3β518 + β3α518 = ?

  • 2

  • 4

  • 4

  • 3


Advertisement