Find the co-ordinates of a point on the parabola y2 = l8x, wher

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

61. Find the equation of the parabola that satisfying the following condition:
Vertex at (0,0), focus on the positive x-axis and length of latus rectum 16 over 9.
104 Views

62. Find the equation of the parabola that satisfying the following condition:
Vertex at (0, 0) focus on the negative side of y-axis and latus rectum equal to it.
91 Views

63. Find the equation of a parabola that satisfies the given condition:
Focus (6, 0), directrix is x = – 6
94 Views

64. Find the equation of a parabola that satisfies the given condition:
Focus (0 – 3); directrix y = 3
148 Views

Advertisement
Advertisement

65. Find the co-ordinates of a point on the parabola y2 = l8x, where the ordinate is 3 times the abscissa.


Let the point be straight P space left parenthesis straight alpha comma space straight beta right parenthesis
∴     straight beta equals 3 straight alpha                                                                          [∵   Ordinate is 3 times the abscissa]
space space space space space straight P left parenthesis straight alpha comma space straight beta right parenthesis lies on the parabola
rightwards double arrow               straight beta squared equals 18 straight alpha space space rightwards double arrow space space left parenthesis 3 straight alpha right parenthesis squared space equals space 18 straight alpha space space space rightwards double arrow space space straight a squared space equals space 2 straight alpha
rightwards double arrow               <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
When space space space straight alpha equals 0 comma space straight beta equals 0 space and space when space straight alpha equals 2 comma space straight beta equals 6
Hence, the coordinates of the point are (2, 6).

165 Views

Advertisement
66. Find the area of the triangle formed by the lines joining the vertex of the parabola x2 = 12y to the ends of the latus rectum. 
181 Views

67.

An equilateral triangle is inscribed in the parabola straight y squared equals 4 ax., where one vertex is at the vertex of the parabola. Find (a)  the length of the side of the triangle, (b) area of triangle ABC.

187 Views

68. If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus. 
91 Views

Advertisement
69. LL' is the latus rectum of a parabola, y2 = 4ax, a > 0. Find the co-ordinates of points L and L'.
94 Views

70. LL' is the latus rectum of a parabola, x2 = -8y. Find the co-ordinates of points L and L'.
93 Views

Advertisement