Use the Chain rule to find the derivatives of the following: fr

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

141. Examine the derivability of the following function:
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x minus 1 comma space space space straight x less than 2 end cell row cell 2 straight x minus 3 comma space straight x greater or equal than 2 end cell end table close
at space straight x equals 2
80 Views

 Multiple Choice QuestionsLong Answer Type

142. For what choices of a and b is the function

straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left columnspacing 1.4ex end attributes row cell straight x squared comma end cell cell straight x less or equal than straight c end cell row cell straight a space straight x plus straight b comma end cell cell straight x greater than straight c end cell end table close
differentiable space at space straight x equals straight c ?
75 Views

143. Write an example of a function which is everywhere continuous but not differentiable at exactly 3 points.
72 Views

 Multiple Choice QuestionsShort Answer Type

144. Does there exist a function which is continuous everywhere but not differentiable at exactly two points ? Justify your answer.
86 Views

Advertisement
145. Write an example of a function which is continuous everywhere but fails to be differentiable at exactly five points.
80 Views

146. Use Chain rule to find the derivative of (3x2 + 2)2.
87 Views

147. Use Chain rule to find the derivative of open parentheses fraction numerator 3 space straight x minus 1 over denominator 2 space straight x plus 1 end fraction close parentheses squared
87 Views

Advertisement

148. Use the Chain rule to find the derivatives of the following:
straight f left parenthesis straight t right parenthesis equals open parentheses fraction numerator 2 straight t cubed plus 1 over denominator 3 straight t squared plus 1 end fraction close parentheses squared


straight f left parenthesis straight t right parenthesis equals open parentheses fraction numerator 2 straight t cubed plus 1 over denominator 3 straight t squared plus 1 end fraction close parentheses squared
Let space space space space space space space space space space space space space space space straight y equals straight f left parenthesis straight t right parenthesis minus straight u squared comma space where space straight u equals fraction numerator 2 straight t cubed plus 1 over denominator 3 straight t squared plus 1 end fraction.
Then space space space space space space space space space dy over du equals 2 straight u
and space space space space space space space space space space space du over dt equals fraction numerator left parenthesis 3 straight t squared plus 1 right parenthesis begin display style straight d over dt end style left parenthesis 2 straight t cubed plus 1 right parenthesis minus left parenthesis 2 straight t cubed plus 1 right parenthesis begin display style straight d over dt end style left parenthesis 3 straight t squared plus 1 right parenthesis over denominator left parenthesis 3 straight t squared plus 1 right parenthesis squared end fraction
space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator left parenthesis 3 straight t squared plus 1 right parenthesis left parenthesis 6 straight t squared right parenthesis minus left parenthesis 2 straight t cubed plus 1 right parenthesis left parenthesis 6 straight t right parenthesis over denominator left parenthesis 3 straight t squared plus 1 right parenthesis squared end fraction equals fraction numerator 18 straight t to the power of 4 plus 6 straight t squared minus 12 straight t to the power of 4 minus 6 straight t over denominator left parenthesis 3 straight t squared plus 1 right parenthesis squared end fraction
space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 6 straight t to the power of 4 plus 6 straight t squared minus 6 straight t over denominator left parenthesis 3 straight t squared plus 1 right parenthesis squared end fraction equals fraction numerator 6 left parenthesis straight t to the power of 4 plus straight t squared minus straight t right parenthesis over denominator left parenthesis 3 straight t squared plus 1 right parenthesis squared end fraction
By space Chain space Rule comma dy over dt equals dy over du du over dt
therefore space space space space space space space space space space space space space space space space space space dy over dt equals 2 straight u. fraction numerator 6 left parenthesis straight t to the power of 4 plus straight t squared minus 1 right parenthesis over denominator left parenthesis 3 straight t squared plus 1 right parenthesis squared end fraction equals 2 open parentheses fraction numerator 2 straight t cubed plus 1 over denominator 3 straight t squared plus 1 end fraction close parentheses. fraction numerator 6 left parenthesis straight t to the power of 4 plus straight t squared minus straight t right parenthesis over denominator left parenthesis 3 straight t squared plus 1 right parenthesis squared end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 12 left parenthesis 2 straight t squared plus 1 right parenthesis left parenthesis straight t to the power of 4 plus straight t squared minus straight t right parenthesis over denominator left parenthesis 3 straight t squared plus 1 right parenthesis cubed end fraction
75 Views

Advertisement
Advertisement
149. Differentiate the following w.r.t.x: straight e to the power of negative straight x end exponent
81 Views

150. Differentiate the following w.r.t.x: straight e to the power of straight x squared end exponent
84 Views

Advertisement