Differentiate the following w.r.t.x: from Mathematics Continuit

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

151. Differentiate the following w.r.t.x: straight e to the power of straight x cubed end exponent
90 Views

152. Differentiate the following w.r.t.x: square root of straight e to the power of square root of straight x end exponent end root comma straight X greater than 0
97 Views

153. Differentiate ex + ex2 +....+ ex5. w.r.t.x.
76 Views

154. Differentiate the following w.r.t.x :log (log x),x>1
94 Views

Advertisement
155. Differentiate the following w.r.t.x :log7 (log x)
133 Views

156. Differentiate (3x2 - 9 x + 5)9 w.r.t.x.
92 Views

157. Differentiatesquare root of 15 straight x squared minus straight x plus 1 end root straight w. straight r. straight t space straight x
86 Views

158. Differentiate space square root of 3 straight x plus 2 end root plus fraction numerator 1 over denominator square root of 2 straight x squared plus 4 end root end fraction straight w. straight r. straight t space space straight x.
90 Views

Advertisement
159. Differentiatesquare root of fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction end rootW.r.t x.
84 Views

Advertisement

160. Differentiate the following w.r.t.x:left parenthesis 4 straight x cubed minus 5 straight x squared plus 1 right parenthesis to the power of 4


Let space space space space space straight y equals left parenthesis 4 straight x cubed minus 5 straight x squared plus 1 right parenthesis to the power of 4.
therefore dy over dx equals 4 left parenthesis 4 straight x cubed minus 5 straight x squared plus 1 right parenthesis cubed. straight d over dx left parenthesis 4 straight x cubed minus 5 straight x squared plus 1 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because straight d over dx left parenthesis straight u to the power of straight n right parenthesis equals straight n space straight u to the power of straight n minus 1 end exponent du over dx close square brackets
space space space space space space space space space space space space equals 4 left parenthesis 4 straight x cubed minus 5 straight x squared plus 1 right parenthesis cubed. left parenthesis 12 straight x squared minus 10 straight x right parenthesis equals 8 straight x left parenthesis 4 straight x cubed minus 5 straight x squared plus 1 right parenthesis cubed. left parenthesis 6 straight x minus 5 right parenthesis
91 Views

Advertisement
Advertisement