Differentiate the following functions w.r.t. x :  from Mathema

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

261. Differentiate x.logx.log(log x)w.r.t.x.
84 Views

262. If space straight x to the power of straight p. straight y to the power of straight q equals left parenthesis straight x plus straight y right parenthesis to the power of straight p plus straight q end exponent comma space show space that space dy over dx equals straight y over straight x
80 Views

 Multiple Choice QuestionsLong Answer Type

263. Differentiate xlog x + (log x)x w.r.t.x 
73 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

264. Differentiate the following functions w.r.t. x : straight x to the power of straight x plus straight x to the power of log space straight x end exponent


Let space space straight y equals straight x to the power of straight x plus straight x to the power of log space straight x end exponent
Put space straight x to the power of straight x equals straight u comma space straight x to the power of log space straight x end exponent equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals straight x to the power of straight x
therefore space log space straight u equals log space straight x to the power of straight x
rightwards double arrow space log space straight u equals straight x. log space straight x
therefore space 1 over straight u du over dx equals straight x.1 over straight x plus log space straight x.1
therefore space du over dx equals straight u left parenthesis 1 plus log space straight x right parenthesis
therefore space du over dx equals straight x to the power of straight x left parenthesis 1 plus log space straight x right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals straight x to the power of log space straight x end exponent
therefore space log space straight v equals log left parenthesis straight x to the power of log space straight x end exponent right parenthesis
rightwards double arrow space log space straight v equals log space straight x. log space straight x
therefore space 1 over straight v dv over dx equals log space straight x.1 over straight x plus log space straight x.1 over straight x
therefore space dv over dx equals straight v open parentheses fraction numerator 2 log space straight x over denominator straight x end fraction close parentheses
therefore space dv over dx equals 2 fraction numerator log space straight x over denominator straight x end fraction. straight x to the power of log space straight x end exponent
therefore space dv over dx equals 2 log space straight x. straight x to the power of lox space minus 1 end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From (1), (2) and (3), we get,
space space space space space space dy over dx equals straight x to the power of straight x left parenthesis 1 plus log space straight x right parenthesis plus 2 log space straight x. straight x to the power of log space straight x minus 1 end exponent
73 Views

Advertisement
Advertisement
265. Differentiate the following functions w.r.t. x :
left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log space straight x end exponent
73 Views

266. Differentiate the following functions w.r.t. x :
open parentheses straight x plus 1 over straight x close parentheses to the power of straight x plus straight x to the power of open parentheses straight x plus 1 over straight x close parentheses end exponent
81 Views

267. Differentiate the following functions w.r.t. x :straight x to the power of straight x to the power of 2 minus 3 end exponent end exponent plus left parenthesis straight x minus 3 right parenthesis to the power of straight x squared end exponent space for space straight x greater than 3
73 Views

268. Differentiate the following w.r.t. x :(log x)log x + (1 + x)2x
75 Views

Advertisement
269. Differentiate the following w.r.t. x :
     xx + x1/x
76 Views

270.

Differentiate the following w.r.t. x 
   xx + (1 + x)log x

73 Views

Advertisement