Differentiate the following functions w.r.t. x : from Mathemati

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

261. Differentiate x.logx.log(log x)w.r.t.x.
84 Views

262. If space straight x to the power of straight p. straight y to the power of straight q equals left parenthesis straight x plus straight y right parenthesis to the power of straight p plus straight q end exponent comma space show space that space dy over dx equals straight y over straight x
80 Views

 Multiple Choice QuestionsLong Answer Type

263. Differentiate xlog x + (log x)x w.r.t.x 
73 Views

 Multiple Choice QuestionsShort Answer Type

264. Differentiate the following functions w.r.t. x : straight x to the power of straight x plus straight x to the power of log space straight x end exponent
73 Views

Advertisement
Advertisement

265. Differentiate the following functions w.r.t. x :
left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log space straight x end exponent


Let space straight y equals left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log space straight x end exponent
Put space left parenthesis log space straight x right parenthesis to the power of straight x equals straight u comma space straight x to the power of logx equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals left parenthesis log space straight x right parenthesis to the power of straight x
therefore space log space straight u equals log left parenthesis log space straight x right parenthesis to the power of straight x
therefore space log space straight u equals straight x. log left parenthesis log space straight x right parenthesis
therefore space 1 over straight u du over dx equals straight x. open parentheses fraction numerator 1 over denominator log space straight x end fraction.1 over straight x close parentheses plus log left parenthesis log space straight x right parenthesis.1
therefore space du over dx equals straight u open square brackets fraction numerator 1 over denominator log space straight x end fraction plus log left parenthesis log space straight x right parenthesis close square brackets
therefore space du over dx equals left parenthesis log space straight x right parenthesis to the power of straight x open square brackets fraction numerator 1 over denominator log space straight x end fraction plus log left parenthesis log space straight x right parenthesis close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals straight x to the power of log space straight x end exponent
therefore space log space straight v equals log left parenthesis straight x to the power of log space straight x end exponent right parenthesis
space space space space space space space space space space space space space equals log space straight x. log space straight x equals left parenthesis log space straight x right parenthesis squared
therefore space 1 over straight v dv over dx equals left parenthesis 2 log space straight x right parenthesis. open parentheses 1 over straight x close parentheses
therefore space dv over dx equals straight v open square brackets fraction numerator 2 log space straight x over denominator straight x end fraction close square brackets
therefore space dv over dx equals straight x to the power of log space straight x end exponent open parentheses fraction numerator 2 log space straight x over denominator straight x end fraction close parentheses
therefore space dv over dx equals 2 straight x to the power of log space straight x minus 1 end exponent log space straight x space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From (1), (2), (3), we get,
space space space space dy over dx equals left parenthesis log space straight x right parenthesis to the power of straight x open square brackets fraction numerator 1 over denominator log space straight x end fraction plus log left parenthesis log space straight x right parenthesis close square brackets plus 2 straight x to the power of log space straight x minus 1 end exponent. log space straight x
73 Views

Advertisement
266. Differentiate the following functions w.r.t. x :
open parentheses straight x plus 1 over straight x close parentheses to the power of straight x plus straight x to the power of open parentheses straight x plus 1 over straight x close parentheses end exponent
81 Views

267. Differentiate the following functions w.r.t. x :straight x to the power of straight x to the power of 2 minus 3 end exponent end exponent plus left parenthesis straight x minus 3 right parenthesis to the power of straight x squared end exponent space for space straight x greater than 3
73 Views

268. Differentiate the following w.r.t. x :(log x)log x + (1 + x)2x
75 Views

Advertisement
269. Differentiate the following w.r.t. x :
     xx + x1/x
76 Views

270.

Differentiate the following w.r.t. x 
   xx + (1 + x)log x

73 Views

Advertisement