from Mathematics Continuity and Differentiability

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

271.  Differentiate the following w.r.t. x :
xx + xa + ax + aa for some fixed a > 0 and x > 0
73 Views

272. Find space dy over dx comma space if space straight y to the power of straight x plus straight x to the power of straight y plus straight x to the power of straight x equals straight a to the power of straight b.
74 Views

273. If space straight y equals 1 plus fraction numerator straight c subscript 1 over denominator straight x minus straight c subscript 1 end fraction plus fraction numerator straight c subscript 2 straight x over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction comma space prove space that space
dy over dx equals straight y over straight x open parentheses fraction numerator straight c subscript 1 over denominator straight c subscript 1 minus straight x end fraction plus fraction numerator straight c subscript 2 over denominator straight c subscript 2 minus straight x end fraction close parentheses
75 Views

Advertisement

274. If space straight y equals fraction numerator ax over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight c over denominator straight x minus straight c end fraction plus 1.
prove space that space fraction numerator straight y apostrophe over denominator straight y end fraction equals 1 over straight x open parentheses fraction numerator straight a over denominator straight a minus straight x end fraction plus fraction numerator straight b over denominator straight b minus straight x end fraction plus fraction numerator straight c over denominator straight c minus straight x end fraction close parentheses


space straight y equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight c over denominator straight x minus straight c end fraction plus 1
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus open parentheses fraction numerator straight c over denominator straight x minus straight c end fraction plus 1 close parentheses
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight x over denominator straight x minus straight c end fraction
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx plus straight x left parenthesis straight x minus straight b right parenthesis over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight x squared over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction equals fraction numerator ax squared plus straight x squared left parenthesis straight x minus straight a right parenthesis over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction
therefore space straight y equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction
therefore space log space straight y equals log open square brackets fraction numerator straight x cubed over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction close square brackets
rightwards double arrow space log space straight y equals log space straight x cubed minus log left square bracket left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis right square bracket
therefore space log space straight y equals 3 log space straight x minus log left parenthesis straight x minus straight a right parenthesis minus log left parenthesis straight x minus straight b right parenthesis minus log left parenthesis straight x minus straight c right parenthesis
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space 1 over straight y dy over dx equals 3 over straight x minus fraction numerator 1 over denominator straight x minus straight a end fraction minus fraction numerator 1 over denominator straight x minus straight b end fraction minus fraction numerator 1 over denominator straight x minus straight c end fraction
therefore space 1 over straight y dy over dx equals open parentheses 1 over straight x minus fraction numerator 1 over denominator straight x minus straight a end fraction close parentheses plus open parentheses 1 over straight x minus fraction numerator 1 over denominator straight x minus straight b end fraction close parentheses plus open parentheses 1 over straight x minus fraction numerator 1 over denominator straight x minus straight c end fraction close parentheses
therefore space 1 over straight y dy over dx equals fraction numerator straight x minus straight a minus straight x over denominator straight x left parenthesis straight x minus straight a right parenthesis end fraction plus fraction numerator straight x minus straight b minus straight x over denominator straight x left parenthesis straight x minus straight b right parenthesis end fraction plus fraction numerator straight x minus straight c minus straight x over denominator straight x left parenthesis straight x minus straight c right parenthesis end fraction
therefore space 1 over straight y dy over dx equals 1 over straight x open square brackets fraction numerator straight a over denominator straight a minus straight x end fraction plus fraction numerator straight b over denominator straight b minus straight x end fraction plus fraction numerator straight c over denominator straight c minus straight x end fraction close square brackets
therefore space space space space space space space space fraction numerator straight y apostrophe over denominator straight y end fraction equals 1 over straight x open square brackets fraction numerator straight a over denominator straight a minus straight x end fraction plus fraction numerator straight b over denominator straight b minus straight x end fraction plus fraction numerator straight c over denominator straight c minus straight x end fraction close square brackets
71 Views

Advertisement
Advertisement
275. If u, v, w are differentiable function ofx, then show that
straight d over dx left parenthesis straight u. straight v. straight w right parenthesis equals du over dx. vw plus straight u. dv over dx. straight w plus straight u. straight v dw over dx
in two ways - first by repeated application of product rule, second by logarithmic differentiation.
76 Views

276.

Differentiate (x2-5x+8)(x3+7x+ 9) in three ways mentioned below :
(i) by using product rule.
(ii) by expanding the product to obtain a single polynomial.
(iii) by logarithmic differentiation.
Also verify that three answers so obtained are the same.

72 Views

277. Use Chain Rule to differentiate sin (x2) w.r.t.x.
84 Views

278. Use Chain Rule to differentiate w.r.t.x: tan (2 x + 3)
87 Views

Advertisement
279. Use Chain Rule to differentiate w.r.t.x: sin (cos x2)
77 Views

280. Differentiate w.r.t.x:sin left parenthesis straight x squared plus 5 right parenthesis
90 Views

Advertisement