from Mathematics Continuity and Differentiability

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

601. Verify Roll's Theorem for the function :straight f left parenthesis straight x right parenthesis equals space 4 space sin space straight x space in space left square bracket 0 comma space straight pi right square bracket.
72 Views

602. If space space straight f open parentheses straight x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin open parentheses straight a plus 1 close parentheses plus 2 sinx over denominator straight x end fraction comma space straight x less than 0 end cell row cell 2 space space space space space space space space space space space space space space space space space space space space space space comma space x equals 0 end cell row cell fraction numerator square root of 1 plus b x end root minus 1 over denominator straight x end fraction space space space space space space comma space straight x greater than 0 end cell end table close
is continuous at x = 0, then find the values of a and b.
1266 Views

603. if space cos space left parenthesis straight a plus straight y right parenthesis space equals space cos space straight y space then space prove space that space dy over dx space equals fraction numerator cos squared left parenthesis straight a plus straight y right parenthesis over denominator sin space straight a end fraction
Hence space show space that space sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction plus sin space 2 space left parenthesis straight a plus straight y right parenthesis dy over dx equals 0
1206 Views

Advertisement

604. Find space dy over dx space if space straight y equals sin to the power of negative 1 end exponent open square brackets fraction numerator 6 straight x minus 4 square root of 1 minus 4 straight x squared end root over denominator 5 end fraction close square brackets


Given space that
straight y space equals space sin to the power of negative 1 end exponent space open square brackets fraction numerator 6 straight x minus 4 square root of 1 space minus space 4 straight x squared end root over denominator 5 end fraction close square brackets

if space straight y space equals space sin to the power of negative 1 end exponent straight x comma space then space dy over dx space equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction

straight y space equals space sin to the power of negative 1 end exponent open square brackets fraction numerator 6 straight x minus 4 square root of 1 space minus space 4 straight x squared end root over denominator 5 end fraction close square brackets

rightwards double arrow space space straight y space equals space sin to the power of negative 1 end exponent open square brackets fraction numerator 6 straight x over denominator 5 end fraction minus fraction numerator 4 square root of 1 space minus space 4 straight x squared end root over denominator 5 end fraction close square brackets

rightwards double arrow space straight y space equals space sin to the power of negative 1 end exponent open square brackets fraction numerator 2 straight x.3 over denominator 3 end fraction space minus space fraction numerator 4 square root of 1 space minus space left parenthesis 2 straight x right parenthesis squared end root over denominator 5 end fraction close square brackets

rightwards double arrow space straight y space equals space sin to the power of negative 1 end exponent open square brackets 2 straight x.3 over 5 minus 4 over 5 square root of 1 space minus space left parenthesis 2 straight x right parenthesis squared end root close square brackets

rightwards double arrow space straight y space equals space sin to the power of negative 1 end exponent open square brackets 2 straight x space square root of 1 minus open parentheses 4 over 5 close parentheses squared end root minus space 4 over 5 square root of 1 space minus left parenthesis 2 straight x right parenthesis squared end root close square brackets

we space know space that comma

sin to the power of negative 1 end exponent straight p space minus space sin to the power of negative 1 end exponent straight q space equals space sin to the power of negative 1 end exponent space left parenthesis straight p square root of 1 space minus space straight q squared end root minus straight q-th root of 1 space minus space straight p squared end root right parenthesis

Here comma space straight p space equals space 2 straight x space space and space straight q space equals 4 over 5

Differentiating space the space above space functions space with space respect space straight x comma space space we space have comma space

dy over dx space equals space fraction numerator 1 over denominator square root of 1 minus left parenthesis 2 straight x right parenthesis squared end root end fraction space straight x space 2 minus 0

rightwards double arrow space space dy over dx space equals space fraction numerator 2 over denominator square root of 1 minus 4 straight x squared end root end fraction
space
783 Views

Advertisement
Advertisement
605.

Show that the function straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x minus 3 close vertical bar comma space straight x element of bold R bold comma is  continuous but not differentiable at x=3. 

281 Views

606.

Determine the value of the constant ‘k’ so that the function  is continuous at x = 0.

837 Views

 Multiple Choice QuestionsLong Answer Type

607.

For what value of k is the following function continuous at x = 2?

f ( x )  =2x + 1     ;   x<2    k            ;   x = 2        3x - 1  ;   x>1       


608.

Differentiate the following function w.r.t. x:

y = sinxx + sin-1x


Advertisement
609.

Find dydx if (x2 + y2)2 = xy.


610.

If y =3 cos ( log x ) + 4 sin ( log x ), then show that x2 d2ydx2 + x dydx + y = 0


Advertisement